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The discovery of an electric dipole moment (EDM) of a fundamental particle would provide

evidence for physics beyond the Standard Model. Many popular extensions to the Standard

Model, such as supersymmetry, predict electron electric dipole moments (eEDMs) within a few

orders of magnitude of the current experimental limit. The PbO∗ experiment uses several unique

characteristics of the diatomic molecule lead oxide, that make it a particularly sensitive probe for

detecting an eEDM. The valence electrons in PbO experience an effective intramolecular electric

field of > 1010 V cm−1 which greatly enhances the energy shift due to an eEDM. Because PbO is

chemically stable, unlike many other molecules used in EDM searches, it can be used in a high

temperature vapor cell. The large densities in the vapor cell give the PbO∗ experiment a high

statistical sensitivity. In this thesis we will discuss improvements to both the apparatus and the

experimental methods that have increased the statistical sensitivity to the point that a competitive

limit on the eEDM may be feasible in the near future. Although the eEDM sensitivity was not high

enough to place a new eEDM limit, a preliminary measurement was made that placed stringent

limits on possible systematic effects. Finally we conclude with a proposed second generation of the

experiment based on a microwave absorption measurement. A preliminary analysis suggests the

second generation experiment could have sensitivity a few orders of magnitude higher than the

current experiment. In the course of investigating this new method, we found several applications

in the current experiment. In particular microwave absorption measurements of the PbO vapor

pressure and the population transfer of PbO during laser excitation helped to explain the lower

sensitivity of the experiment in the past.
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Chapter 1

Introduction

Searches for an electric dipole moment (EDM) of a particle have now been carried out for nearly 60

years with null results. The field started in 1950 when Ramsey and Purcell first pointed out, in a

short note [1], that even though an EDM would violate the invariance of physics under parity,

...existence of an electric dipole moment of a nucleus or of an elementary particle...becomes

a purely experimental matter.

Since the 1950s, the limit on the electron EDM1 has been improved by over 14 orders of magnitude

to de < 1.6 × 10−27 e cm [3] (see Fig. 1.1). To put this in perspective, if an electron2 was expanded to

the size of the earth, this limit corresponds to a shift in the charge distribution of less than 40 nm.

From the perspective of the first experimentalists in the field, one might be inclined to politely

suggest that the experimental question of the existence of EDMs has been resolved. However, as

we will discuss below, motivations for EDM searches are stronger today than ever before.

1.1 Motivation

The present day motivation for EDM searches is to discover (or constrain) new sources of CP

violation beyond the Standard Model (SM). CP violation is a difference in the laws of physics

under two transformations: charge conjugation (C), or, roughly speaking, swapping of particles

for antiparticles, and parity (P), or spatial inversion. An EDM is evidence of CP violation because

1There is a similar history for the neutron EDM. See, e.g. [2].
2Here we consider an electron to have a classical radius, re = e2/mec2

≈ 3 × 10−13 cm.

1



CHAPTER 1. INTRODUCTION 2

1 9 6 0 1 9 7 0 1 9 8 0 1 9 9 0 2 0 0 0 2 0 1 0
1 E - 3 2
1 E - 3 0
1 E - 2 8
1 E - 2 6
1 E - 2 4
1 E - 2 2
1 E - 2 0
1 E - 1 8
1 E - 1 6
1 E - 1 4
1 E - 1 2

•

 L a m b  s h i f t         Y b F
 g  f a c t o r              T l F
 H e  s c a t t e r i n g  •  G d I G
 C s                     E u 0 . 5 B a 0 . 5 T i O
 T l                      P b O
 H g                     T h O
 X e
 R b

Ele
ctr

on
 ED

M 
(e•

cm
)

P u b l i c a t i o n  d a t e

Figure 1.1: History of eEDM searches. Previous measurements: Lamb shift [4], g factor of e− [5, 6],
e− scattering on He [7], rubidium [8], cesium [9–13], thallium [3, 14–16], xenon [17, 18], thallium
fluoride [19–22], mercury [23–27], GdIG [28]. Projected limits for experiments in progress at Yale:
PbO [29], ThO [30], Eu0.5Ti0.5O3 [31]. Red, blue, and green symbols are atomic, molecular, and solid
state experiments, respectively.
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Parity Time

dipole Spin

Figure 1.2: Violation of P and T invariance. A particle with an EDM is not invariant under either
the parity or time reversal transformations. The charge distribution, here represented as a dented
ball, is inverted under parity, changing the direction of the electric dipole moment, d. Under time
reversal the spin, S, reverses direction while d is unaffected.

it is non-invariant under both time reversal (T) and parity (P) (see Fig. 1.2). The combined CPT

symmetry, which holds for all Lorentz invariant field theories, implies that T violation is equivalent

to CP violation.

CP violation is interesting for two main reasons. The first stems from the observation that the

universe today consists almost entirely of matter, with virtually zero antimatter. The existence

of the cosmic microwave background (CMB) suggests that shortly after the Big Bang there were

nearly equal amounts of matter and antimatter. As the universe cooled, matter and antimatter

annihilated producing the CMB photons we see today. The ratio of the number densities of

the remaining baryons and CMB photons, denoted by η, is thus a good measure of the matter-

antimatter asymmetry of the universe. Observations of the CMB combined with limits derived

from the observed large scale structure of the universe give η = 6.1(2) × 10−10 [32]. While this

number is extremely small the fact that it is not zero (and that there is a baryonic universe today!) is

difficult to explain. In 1964, Sakharov [33] showed that in any theory that explains the asymmetry,

three conditions must have been met in the early universe: violation of baryon number, C and

CP violation, and thermal non-equilibrium. Estimates of η based on CP violation in the SM are

generally over 10 orders of magnitude smaller [34, 35] than the observed value. Thus there must be
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additional sources of CP violation. Note, it is entirely possible that the CP violation which explains

the baryon asymmetry occurred at an extremely high energy scale (e.g. leptogenesis theories) and

has no observable low energy effects.

However, this does lead us to our second motivation. Most theories beyond the SM introduce

new sources of CP violation. In fact, without resorting to new symmetries, fine-tuning, or extremely

high energy scales, it is generally difficult to devise a theory that has as little CP violation as the

Standard Model.

In the SM, CP violation can occur in two places.3 The Lagrangian for the strong force has one

CP violating term, θ̄. The current experimental limit on the neutron EDM [36] constrains this

term to be extremely small, θ̄ ≤ 10−11. The second source of CP violation is a single phase in the

Kobayashi-Maskawa (KM) quark mixing matrix [37]. Experimental observations constrain the KM

phase to be on the order of one, i.e. it violates CP almost maximally. All observations, e.g. in the

K [38] and B mesons [39, 40], are consistent with this single phase.4 Symmetry in the structure of

the KM matrix suppresses the effects of the CP violating phase in experiments. For the electron

electric dipole moment (eEDM), four-loop terms lead to a Standard Model electron EDM prediction

of 1 × 10−40 e cm [2], 13 orders of magnitude below the current experimental limit of 1.6 × 10−27 e cm

[3].

However, many popular extensions to the SM, e.g. supersymmetry, naturally include CP

violating phases that can give rise to EDMs even larger than current experimental limits. For the

eEDM there is a simple, heuristic explanation for these values [42]. The eEDM arises from CP

violating radiative corrections analogous to those that lead to the anomalous magnetic moment of

the electron. Fig. 1.3 shows the one-loop diagram for the anomalous magnetic moment and a one-

loop diagram, leading to an eEDM, that arises from a new CP violating interaction. A standard field

theory calculation gives the one-loop contribution to the anomalous magnetic moment, (g− 2) = α
π .

The EDM diagram is similar but has a coupling strength f instead of e, an extra CP-violating phase

φ, and a propagator with mass mX, which introduces a factor of 1/m2
X. Dimensional arguments

suggest that

de = sinφ( f/e)
( me

mX

)2
(g − 2). (1.1)

3If massive neutrinos are considered part of the SM, there is an additional CP violating phase but it not thought to explain
the baryon asymmetry or lead to observable EDMs.

4One recent experiment [41] reports a 3-σ deviation from the SM in neutral B mesons.
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Figure 1.3: One-loop EDM diagram. Left: One-loop Feynman diagram for the anomalous magnetic
moment. Right: One-loop diagram, leading to an eEDM, that arises from a hypothetical new CP
violating interaction. The new interaction has a coupling f between the electron and a massive
particle, X. The CP violating phase φ is schematically represented by the cross mark.

If we assume the couplings are comparable, the CP violating phase φ is on the order of 1, and use

the value of the Bohr magneton, e~
2mec

= 1.93 × 10−11 e cm, we find

de ≈

(100 GeV
mX

)2

× 1 × 10−24 e cm. (1.2)

Additional loops roughly give factors of f 2/π ≈ α/π ≈ 2 × 10−3. Thus, even for a theory where

the electron EDM appears only at the two-loop level, a propagator with mass mX = 100 GeV gives

de = 2 × 10−27 e cm. Note, the 100 GeV mass scale is well-motivated theoretically. New particles are

needed at this scale to stabilize the mass of the Higgs boson.

Fig. 1.4 shows the predictions for many popular SM extensions (see [43] and references therein

for details). One can see that the current experimental limit has tightly constrained the most basic

supersymmetry models. Lowering the experimental limit by a few orders of magnitude will tightly

constrain many of these theories or perhaps lead to a discovery of the eEDM.

1.2 EDM measurement overview

Most EDM experiments use some form of the method of separated fields, also known as Ramsey

spectroscopy[44]. This method, used in everything from atomic clocks to searches for the variation
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Figure 1.4: Theoretical predictions of the eEDM (see [43] and references therein for details). Colored
regions indicate the range of predicted values for the electron EDM in various theories beyond the
Standard Model. Blue indicates a supersymmetric (SUSY) model. The vertical line labeled “Berkeley
(2002)” is the current experimental limit [3].



CHAPTER 1. INTRODUCTION 7

S

B E

ω

 

= gμB ±

 

dE φ

 

= ω

 

T

φ

P

 

=

1. 2. 3. 4.

?

Probability, P
100%

Phase, φ 

50%
+E

-E

1-sin φ
2

Figure 1.5: Ramsey spectroscopy for EDM experiments. 1. The spin of a particle is tipped, tradi-
tionally via an RF pulse, from vertical to horizontal, perpendicular to static electric and magnetic
fields. 2. The spin magnetic moment undergoes Larmor precession. If the particle also has an
EDM, the precession frequency is ω± = gµB ± dE. 3. After a time T, a second RF pulse tips the
spin towards vertical with a probability, P = (1 − sinφ)/2, dependent on the precession phase,
φ = ω±T. 4. Measuring the fraction of particles with vertical spin determines the phase. Measuring
the change in phase when the electric field is reversed gives the energy shift due to the EDM. For
φ ≈ 2nπ, δφ ≈ (ω+ − ω+)T = 2dET.

of fundamental constants, is the workhorse of present day precision measurements. For an EDM

experiment this method relies on the EDM pointing along the spin axis of a particle. Roughly

speaking this must be the case, as any component of an EDM perpendicular to the spin will average

to zero under rotation. More formally the same conclusion can be reached using the Wigner-Eckert

theorem.

Ramsey spectroscopy consists of four steps (see Fig. 1.5). First, the spin of a particle is aligned

perpendicular to static electric (E) and magnetic fields (B), traditionally by using an RF magnetic

field. Next, the spin magnetic moment, µ, undergoes Larmor precession. If the particle also has

an EDM, d, the precession frequency changes slightly due to the torque from the electric field. The

total precession frequency is ω± = gµB ± dE, where g is the magnetic g factor. After a time T, a
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second RF pulse (or analogous method) transfers the particles to a readout state with probability

P = (1 − sinφ)/2, which is dependent on the precession phase, φ = ω±T. Lastly, the particles in the

readout state are detected. For an ensemble the probability, P, is given by the fraction of particles

detected in the readout state. Measuring the change in phase when the electric field is reversed

gives the energy shift due to the EDM. For φ ≈ 2nπ, δφ ≈ (ω+ − ω−)T = 2dET.

For neutral particles this method can be implemented straightforwardly. For example, in neutron

EDM experiments neutrons are sent through a spin polarizer into a holding cell where electric and

magnetic fields are applied. This is followed by spin sensitive detection (e.g. see [36, 45, 46]).

Large electric fields are obviously desirable as bigger shifts in the precession frequency can be

measured more precisely. For neutron EDM experiments the applied fields are usually limited only

by dielectric breakdown and are typically 10 − 100 kV cm−1[47].

For charged particles applying an electric field poses a problem: not only is there a torque on

the EDM, but there is the much stronger Coulomb force. Without a clever design this limits an

experiment to the time it takes for the particle to hit the electrodes. There have been proposals to

use storage rings for muon[48] and deuteron[49] EDM searches, but requirements on field stability

and homogeneity are technically challenging. There is also a relatively new experiment proposing

to use molecular ions in an electrostatic trap [50] with a co-rotating magnetic field.

For an electron EDM search one can avoid these difficulties by using a neutral atom or molecule.

In fact, not only do neutral atoms and molecules help to confine the electrons, they can also enhance

the effect of an electron EDM. The electrons interact with the internal electric field of the atom or

molecule rather than the external electric field applied in the laboratory. As we will discuss in

detail in Chapter 3, the internal electric fields of atoms and molecules can be enormous. For heavy

nuclei, the average Coulomb field for an electron near the nucleus is proportional to Z3 and can

reach ≈ 10 − 100GV cm−1! In atoms, which have a high degree of spherical symmetry, much of this

enhancement is lost as one averages over the electric field direction. Molecules, on the other hand,

can be completely polarized and EDM measurements can take full advantage of the enormous

internal electric field [51].



CHAPTER 1. INTRODUCTION 9

Species Ee f f (V/cm) τ (s) Ṅe f f (s−1) Relative FOM Group

Tl 7 × 107 2.4 × 10−3 109 1 Commins [3]
Cs 4.6 × 105 1.5 × 10−2 1010 0.1 Hunter [13]
Hg 2 × 102 100 107 0.01 Fortson [27]

PbO 2.5 × 1010 5 × 10−5 106 0.5 Demille [29, 52]
YbF 1.3 × 1010 1 × 10−3 5 × 104 0.5 Hinds [53]

PbF 2.9 × 1010 1 × 10−3? ? ? Shafer-Ray [54, 55]
WC 5.4 × 1010 1 × 10−3 ? ? Leanhardt [56]

Molecular ion 3 − 9 × 1010 0.2 − 1 10 4-50 JILA [50]
Cs 1 × 107 1 108 20 Gould [57], Heinzen [58],

Weiss [59]
ThO 1011 2 × 10−3 105 10 ACME [30]

Table 1.1: Electron EDM searches. A good figure-of-merit (FOM) in determining EDM sensitivity

is Ee f fτ
√

Ṅe f f , where Ee f f is the effective electric field, τ is the measurement coherence time, and

Ṅe f f is the effective counting rate.

1.2.1 Experimental sensitivity

The effective electric field on an electron is only one of the key factors for determining the sensitivity

of an EDM experiment. To achieve high precision, statistics are vitally important. Two factors are

important in a spin-precession measurement. The first is the coherence time, τ, of the measurement.

From the Heisenberg uncertainty principle, a single frequency measurement can achieve at best a

sensitivity of δω = 1/δτ or δ f = 1/(2πτ). Second, in an experiment not limited by technical noise,

N measurements reduce the uncertainty by a factor of
√

N. Thus a good figure-of-merit (FOM) in

determining EDM sensitivity is Ee f fτ
√

Ṅ, where Ṅ is the counting rate.

1.2.2 Survey of electron EDM experiments

An ideal EDM experiment would maximize the three factors in the sensitivity figure of merit:

effective electric field, coherence time, and counting rate. In practice, most experiments can max-

imize one only at the expense of another. For example, the low density of beam experiments

generally leads to long coherence times but low counting rates. The high density of vapor cells

give large counting rates but limited coherence time. Atoms have smaller effective electric fields

than molecules, but molecules give lower counting rates since their thermal population is spread

amongst many more levels. In practice, none of these trade offs is absolute; clever experimental
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techniques mean that each experiment must be considered on its own merits.

Table 1.1 shows a few past, present, and future electron EDM experiments. The top group of

experiments have already been completed.

The Commins experiment [3], current holder of the best electron EDM limit, used the heavy

atom thallium for a large effective electric field, relative to other atoms, and a high flux beam source.

The experiment by the Hunter group [13] used a room temperature cesium vapor cell with a

paraffin coating that preserved the spin coherence through many wall collisions. The counting

rate and coherence time were higher than the thallium experiment. However, a combination of the

lower applied electric field and a lower Z atom led to an effective electric field a couple of orders of

magnitude smaller.

The experiment by the Fortson group [23, 24, 26, 27] is somewhat of an anomaly since it was

primarily designed to look for an EDM of the mercury nucleus. The experiment monitors the

nuclear spin of mercury in a room temperature vapor cell with a paraffin coating giving coherence

times of over 100 seconds. Over the decades the experiment has been running, the statistical

sensitivity has improved to the point that it now gives a competitive limit on the electron EDM,

despite the fact that the mercury atom has an enhancement factor of much less than one (i.e. the

electron EDM effect is diminished).

The middle group of experiments, PbO and YbF, have matured to the point that EDM data has

been taken.

The YbF experiment [53] utilizes the high effective electric field of a diatomic molecule and the

relatively long coherence time of a beam experiment. Supersonic expansion of the molecular beam

puts most of the molecules in the ground state, increasing the counting rate over typical thermal

molecular beams. However, the counting rate remains orders of magnitude below a thermal atomic

beam.

By comparison, in the PbO experiment we trade coherence time for a higher counting rate by

using a high temperature vapor cell. In theory, the counting rate could be further increased by

orders of magnitude with absorption detection, something not possible in a beam experiment. In

addition, a feature of the electronic structure of PbO, called Ω-doubling, allows one to control the

direction of the internal electric field of the molecule, which provides a significant advantage in

eliminating systematic effects. This will be discussed in detail later in the thesis.

The last group of experiments are proposed EDM searches. The cesium experiments propose to
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optically trap atoms, resulting in a long coherence time and high counting rate. A group at JILA [50]

proposes to use molecular ions in a RF trap to combine the high effective electric fields of molecules

with a long coherence time. The Shafer-Ray group [54] proposes to use PbF in a beam experiment

similar in spirit to YbF but with lower sensitivity to systematic effects from magnetic fields. The

Leanhardt group [56] plans to take advantage of the ground state Ω-doublet structure of WC in a

cold beam experiment.

Finally, the ACME collaboration of DeMille, Doyle, and Gabrielse [30] plans to use ThO in a

new high flux cold beam source. ThO has the highest known effective electric field of any molecule

proposed for an EDM search and an Ω-doublet structure similar to PbO for systematic rejection.

Note that the numbers shown in Table 1.1 for ThO are conservative estimates based mostly on

measured quantities for the first generation of the experiment.

Not mentioned in this discussion are the solid state electron EDM searches. Because they use

entirely different experimental methods it is difficult to give a common figure of merit for both types

of experiments. The (Eu,Ba)TiO3 experiment at Yale applies an electric field to a sample and looks

for a small induced magnetization. If the electron has an EDM it tends to orient along the electric

field which aligns the electron spins in the solid. The proposed sensitivity of this experiment is

about one order of magnitude better than the Berkeley limit.

1.3 Overview of the PbO experiment

Because an electron EDM is aligned with the electron spin axis, EDM shifts can be seen only in

molecular states with unpaired spins. In the past, molecular EDM experiments were considered

solely with molecules which had unpaired spins in their ground state. These molecules, called free

radicals, are chemically unstable and can only be used in molecular beams, where there are few

collisions. The PbO experiment avoids this restriction by using an excited metastable state with

unpaired spins for the EDM measurement. In the ground state, the spins are paired and thus PbO is

chemically stable. As mentioned above, this allows the use of a high temperature vapor cell which

typically give higher counting rates than molecular beams.

The EDM measurement process in the PbO experiment starts with the excitation of the molecules

from the ground state to an energy level with angular momentum J = 1, in a metastable state. Next,

the molecules are prepared in a superposition of the magnetic sublevels, |Ψ〉 = |J = 1,M = 1〉 +
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Figure 1.6: Cartoon version of the PbO experiment. Parallel electric, Eext, and magnetic, B, fields
are applied to PbO molecules in a vapor cell. Valence electrons with parallel spins sit in the internal
electric field, Eint, of the molecules. The EDM shift is determined by comparing energy splittings,
∆E = 2gµB + 2deEint between |J = 1,M = ±1〉 sublevels. Three different reversals Eext, Eint, and B
change the relative sign of the two terms in ∆E. Few systematic effects change in the same manner
as the EDM term under these three reversals. The Eint reversal is particularly useful because it
requires no changes to the external fields generated by the experimental apparatus.
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Figure 1.7: Quantum beats. If the M = ±1 sublevels of an excited state are split by energy ω, a
superposition of states evolves according to |Ψ(T)〉 = |M = −1〉 + e−iωT

|M = +1〉. Because of the
relative phase, the decay amplitudes to a common M = 0 level can interfere leading to a modulation
of the form, S(T) = (1 − C sinωT)/2, in the decay fluorescence called quantum beats. The contrast,
C, accounts for decays to other sublevels in the ground state that do not exhibit interference.

|J = 1,M = −1〉, which is roughly the quantum mechanical analogue of a spin oriented in the x − y

plane. A magnetic field is applied in the z direction which causes a Zeeman shift of the sublevels

δE = gµMB, which is analogous to the Larmor precession frequency in Ramsey spectroscopy.

Electrodes in the vapor cell apply an electric field which causes a Stark shift common to both

sublevels and polarizes the molecules (see Fig. 1.7). If the electron has an EDM, de, the internal

electric field of the molecule causes an additional Stark shift giving δE = gµMB + deMEint.

A feature of the electronic structure of PbO, called Ω-doubling, allows us to choose the direction

of the internal electric field of the molecules by selectively polarizing them with or against the

external electric field. As we will discuss below, this novel ability is a powerful tool for rejecting

systematics and has become a de facto requirement for new molecular EDM search proposals.

1.3.1 Quantum beats

From the Schrödinger equation, the relative phase between the states in the superposition evolves

according to |Ψ(T)〉 = |J = 1,M = 1〉 + e−iω±T
|J = 1,M = −1〉, where ω = 2gµB + 2deEint is the energy

difference between the sublevels. If a molecule decays to a M=0 sublevel in the ground state the
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decay amplitudes from the M=+1 and M=-1 levels can interfere due to this phase difference (see

Fig. 1.7). In practice this interference shows up as an intensity modulation of the decay fluorescence

with a time dependence of (1 − C sinωT)/2, where the contrast, C, accounts for decays to other

sublevels that do not exhibit interference. This modulation is referred to as quantum beats. Similar

to Ramsey spectroscopy, the EDM shift is given by the difference of the quantum beat frequency

for opposite directions of any of the fields (magnetic, external electric, or the the internal electric

field).5

This method, called quantum beat spectroscopy, has several advantages over traditional Ramsey

spectroscopy. First, because the quantum beat frequency is proportional to an energy difference it

is not broadened by energy shifts common to both sublevels. For example, because the Doppler

shift is common to both decay paths, the quantum beat frequency is not Doppler broadened to first

order. Thus despite an 800 MHz Doppler width of the fluorescence transition, the beat frequency

width is limited only by the lifetime of the metastable state to ≈ 4 kHz. Similarly the beat frequency

is not affected by the few MHz broadening due to inhomogeneous electric fields in the vapor cell.

A second advantage of quantum beat spectroscopy is that each experimental data point is a

frequency. In Ramsey spectroscopy the actual measured quantity is the number of particles in the

readout state which corresponds to a height on the fringe curve (see Fig. 1.5). To infer a change

in phase due to an EDM, one must use the total number of particles, which sets the height of

the fringes, and the magnetic field, which sets the phase of the curves. Unknown fluctuations of

either of these quantities leads to systematic errors or noise. In essence quantum beat spectroscopy

generates the entire fringe curve in each shot.

1.3.2 Experimental reversals in PbO

The fact that the EDM shift can be determined from several unique combinations of quantum beat

frequency measurements is useful for rejecting systematic effects. For example, the difference of

the beat frequencies for opposite directions of the internal electric field gives, ∆ωEint = (2gµB +

2deEint) − (2gµB − 2deEint) = 4deEint. Because this reversal is internal to the molecule and requires

essentially no changes to the apparatus, it is particularly powerful at eliminating systematic effects.

Through this difference, the states with opposite internal electric fields act as co-magnetometers by

5The two states with opposite internal electric field directions are defined by their polarization relative to the external
field. Thus leaving the state unchanged and reversing the external electric field also reverses the internal electric field.
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Figure 1.8: Comagnetometer in action. Bottom: Beat frequencies for two orientations of the molecule
n+ and n− taken with only one layer of magnetic shielding. Top: Subtracting the beat frequencies
cancels the drifting magnetic field. The discrete jumps seen in the bottom are most likely due to an
elevator nearby the lab.

“measuring” and canceling magnetic field effects.

Fig. 1.8 shows data taken with only a single layer of magnetic shielding. Discrete jumps seen in

the beat frequencies on the bottom are most likely due to changing magnetic fields from an elevator

near the lab. Subtracting the frequencies for the two orientations of the molecule, labeled here as

n+ and n−, cancels the drifting magnetic field.

Combinations of beat frequencies from reversals of the external electric field and magnetic field

can be used similarly to measure or cancel various systematics. We will discuss this in more detail

in Section 6.4. In fact, at this point there are no known systematics which survive all three reversals

at the projected sensitivity of our experiment.

1.4 Introduction to EDM systematics

Energy shifts which change sign with the direction of the electric field and are proportional to the

magnetic moment of a particle can mimic the effect of an EDM. The polarizibility of molecules and

the ability to control the direction of the internal electric field with Ω-doubling can suppress these

effects by orders of magnitude compared to atomic systems.
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1.4.1 Motional and transverse magnetic fields

A particle moving with velocity, v, in an electric field,E, will experience a transverse magnetic field in

its rest frame, Bm = v×E/c. Because the motional field changes sign with the electric field its effect can

be similar to an EDM. Motional fields were particularly problematic for atomic beam experiments

which used large electric fields and high particle velocities. The use of counterprogating atomic

beams in the thallium experiment reduced the first order effect, but a coupling between the motional

fields and magnetic field gradients was ultimately the leading systematic error.

In molecular experiments the effect of transverse magnetic fields is highly suppressed. As

alluded to above, the polarizibility of molecules leads to a large tensor Stark splitting, δEst, between

the M = ±1 and M = 0 sublevels. In a magnetic field, B, along the z axis a smaller transverse

magnetic field, B⊥, gives a second order shift of6

δEB⊥ =

∣∣∣∣〈M = 0
∣∣∣ gµ · B⊥

∣∣∣ M = ±1
〉∣∣∣∣2

2(δEst ± gµB)
=

(gµB⊥)2

2(δEst ± gµB)
. (1.3)

This gives a shift in the quantum beat frequency of

δω =
(gµB⊥)2

2

(
1

δEst + gµB
−

1
δEst − gµB

)
≈ −gµB

(
gµB⊥
δEst

)2

. (1.4)

The shift due to a transverse magnetic field in the absence of the tensor Stark effect is equal to the

change in the usual Zeeman shift when B→ B cosθ ≈ B(1−θ2/2), where θ ≈ B⊥/B. The shift in the

beat frequency is then B2
⊥
/B. Comparing with Eq. (1.4), the tensor Stark shift suppresses the shift due

to a transverse field by (gµB⊥/δEst)2. For PbO, gµ ≈ 1.3 MHz G−1 and δEst ≈ 40 MHz. For the usual

magnetic field used in the experiment, B = 100 mG, and a perpendicular field, B⊥ = 0.01B = 1 mG,

the suppression is ≈ 109.

Returning to the motional fields, consider the worst case scenario for a molecule traveling

perpendicular to the electric field. The perpendicular field is the sum of the motional field, Bm =

vE/c, and a field in the same direction, B sinθ, due to a small misalignment of angle θ in between

6Chapter 3 will discuss details on calculation of matrix elements for molecular states.
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the electric and magnetic fields. The systematic shift has three terms

δωB⊥ = −gµB
[

gµ(B sinθ + Bm)
δEst

]2

= −gµB
(gµ)2

[
(B sinθ)2 + 2vEB sinθ/c + (vE/c)2

]
(δEst)2 . (1.5)

The first and third term are eliminated in differences between beat frequencies with the electric

field reversed. Assuming a 1◦ misalignment of the magnetic field B = 100 mG; an electric field,

E = 50 V cm−1, which leads to a Stark shift of ≈ 40 MHz; and using the typical velocity of PbO at

700 ◦C, v = 3 × 104 cm s−1; the second term gives a shift, δωB⊥ = 100 nHz, or a false EDM of ≈ 10−32

e·cm. In addition, reversal of the internal electric field of the molecule, which leaves this shift

unchanged, provides further suppression.

1.4.2 Leakage currents

At high temperatures the resistance of insulators drops exponentially. In a vapor cell this leads to

currents flowing between the electrodes. In the worst case, if the currents take a helical path around

the vapor cell, they can produce a magnetic field along the z axis which reverses with electric field,

mimicking an EDM. A typical leakage current of 10µA produces a field of Bleak ≈ 2µG at the center

of our 8 cm diameter vapor cell. This corresponds to a beat frequency shift of 2gµBleak ≈ 4 Hz or a

false EDM of 3 × 10−25 e·cm, which is significantly higher than our current sensitivity. However, as

we will discuss in further detail in Section 6.4, the reversal of the internal electric field suppresses

this effect by several orders of magnitude and can also be used to directly place a limit on Bleak.

1.4.3 Geometric phases

If the quantization axis of a particle changes over time, energy states can pick up an additional

phase, called a geometric phase [60]. In the simplest case of a spin 1/2 particle the geometric phase

is equal to the solid angle traced out by the quantization axis vector times the magnetic quantum

number, m. Because of this dependence on m, the geometric phase acts as an effective magnetic

field. A geometric phase due to a motional magnetic field, which is proportional to the electric field,

is particularly problematic for EDM experiments.

For particles traveling through changing magnetic and electric fields it is not immediately obvi-
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ous how to define the geometric solid angle, although calculational methods have been introduced

for atomic beam experiments [61], traps [62], and neutron EDM experiments [63]. The internal

angular momentum structure of polar molecules adds further complexity and makes geometric

interpretations difficult. Amar Vutha, a former student on the PbO experiment now working on the

ThO EDM experiment, has recently published a method [64] for calculating geometric phase shifts

based on perturbative calculations of AC Stark and Zeeman shifts due to the changing fields.7 In

this paper, a J=1 state with no internal angular momentum (which neglects Ω-doubling as we have

above) is considered in the limit of weak electrical polarization and Zeeman shifts much smaller

than the tensor Stark shift. The geometric phase due to changing magnetic fields is strongly sup-

pressed by the tensor Stark shift: φgeo,B = (gµB⊥/δESt)2(ω⊥T), where ω⊥ is the rotational velocity of

a the perpendicular field component due to the particles’ motions for a time, T, through the fields.

The inclusion of Ω-doubling and full electrical polarization yields a similar value.

For the PbO experiment ω⊥ is roughly the inverse of the time it takes a molecule to traverse the

cell. At the optimal temperature of the vapor cell this time is approximately equal to the lifetime of

the metastable state, τ = 40µs, which gives a frequency ω⊥ ≈ 25 kHz. Comparing with Eq. (1.5), if

B⊥ is a motional magnetic field this effect is smaller than the motional field systematic by the factor,

ω⊥/gµB < 0.1. This effect is further suppressed by averaging over velocities in the vapor cell and

reversing of the internal electric field [66].

7A recent paper by Meyer et al. [65] includes similar calculations.



Chapter 2

Outline of the thesis

Because the PbO experiment relies heavily on several features of its molecular structure, a quick

introduction to molecular calculations is given in Chapter 3. In particular we focus on the details of

the a(1) electronic state used in the EDM measurement. In Chapter 4 we discuss the physics behind

EDM enhancement in atoms and molecules and delve further into the theoretical calculations

needed to determine the effective internal electric field of PbO. Chapter 5 gives a brief overview

of the experimental apparatus and then focuses on improvements made during the course of this

dissertation. Next, in Chapter 6, we discuss the detection techniques and state preparation methods

used in the EDM measurement. The methods for systematic rejection are introduced. The results

from an EDM data run are discussed. While the EDM limit placed is well over an order of magnitude

larger than the current limit, tight constraints are placed on systematic effects. Chapter 7 then

focuses on a proposed second generation of the PbO experiment based on a microwave absorption

measurement. During the course of a proof-of-principle measurement, we found several uses for

microwave absorption in our current apparatus. Lastly, Chapter 8 offers a few thoughts on the

future of the PbO experiment.

19



Chapter 3

Molecular calculations

The extra degrees of freedom in molecules make them significantly more complicated than atoms.

However, with proper approximations, many of these degrees can be considered independently.

Even with these simplifications most molecular calculations still involve the couplings of several

momenta. In this chapter we introduce the methods used for calculating energy levels of diatomic

molecules and discuss some specific examples for PbO.

3.1 Molecular structure

To a good approximation the internal energy of a diatomic molecule is the sum of its electronic,

vibrational, and rotational energies.

The largest energy scale is the electronic energy. Like atoms, transitions between electronic states

in molecules typically involve optical radiation. In molecules electronic states are labeled with

letters. X represents the ground state, while excited states are typically labeled roughly in order of

energy by A,B,C, . . .or a, b, c, . . .with capital letters for states with the same multiplicity as the ground

state and lowercase letters for other multiplicities. The order of labeling is sometimes historical and

gives little information about the state. After the label one typically gives a designation, 2S+1ΛΩ,

similar to the atomic notation of 2S+1LJ, describing the electronic state. We defer discussion of this

notation to the next section.

After the electronic structure the next largest energy scale is the relatively evenly spaced ladder

of vibrational energies (see Fig. 3.1). For each electronic state one can define a potential for the two

20
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Figure 3.1: Molecular structure. Energy levels in molecules have three scales of structure. The
largest scale is the electronic energy. Each electronic state is represented by an effective potential
that depends on the internuclear distance. In each electronic state there is a ladder of vibrational
levels, designated by the quantum number ν, which are evenly spaced near the bottom of the
potential well. For each vibration level there is a series of rotational levels, designated by the
quantum number J. This figure is schematic only; energy spacings are not to scale and there are
typically many more levels at all scales.
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nuclei due to their Coulomb interactions with each other and the electrons. Near the bottom of the

potential well (i.e. small vibrational quantum number) the electronic potential is nearly harmonic.

Denoting the vibrational quantum number by ν, the vibrational energies are given by (see Chapter 4,

section 1 in [67])

G(ν) = ωe

(
ν + 1

2

)
− ωexe

(
ν + 1

2

)2
+ ωeye

(
ν + 1

2

)3
(3.1)

where ωe is the harmonic vibrational frequency and xe, ye are small corrections to account for

anharmonicity. Vibrational transitions are usually in the far infrared.

The smallest energy scale common to all diatomic molecules is the rotational spectrum. Diatomic

molecules can be approximated as rigid rotators with energies proportional to J(J + 1) where J is

the rotational quantum number. With higher order corrections the rotation energies are

F = Br J(J + 1) −DJ2(J + 1)2 + HJ3(J + 1)3 (3.2)

where Br is called the rotational constant and D and H are higher order distortion corrections.

Rotational transitions are typically in the microwave regime.

In actual diatomic molecules there is some coupling between vibrational and rotational energies.

One method to account for this is the Dunham expansion:

Fν,J =
∑

i j

Yi j

(
ν + 1

2

)i
J j(J + 1) j (3.3)

where Fν,J is the energy of the rovibrational level. The most precise spectroscopic data for PbO

(from Martin et al. [68]) does provide Dunham coefficients for the X and A states. In practice though

it is often more accurate to use Br, D, and H constants tabulated for each vibrational level (when

available). These are provided in Martin et al. [68] for the levels in the X and a states most relevant

to our experiment along with a term G(ν) defined to be the energy referred to the (ν = 0, J = 0) level

of the X ground state. The energy, T, relative to the ground state is then

T = G(ν) + Br(ν)J(J + 1) −D(ν)J2(J + 1)2 + H(ν)J3(J + 1)3. (3.4)
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Table 3.1: Atomic and molecular spectroscopic notation

Atomic property Molecular projection

Symbol Description Values Symbol Values

S Spin 0, 1
2 , 1, . . . Σ 0, 1

2 , 1, . . .
L Orbital angular momentum S,P,D, . . . Λ Σ,Π,∆, . . .
J Total electronic angular momentum 0, 1

2 , 1, . . . Ω 0,± 1
2 ,±1, . . .

3.2 Quick introduction to electronic structure

The electronic structure of diatomic molecules is quite analogous to atomic structure. Instead of

spherical symmetry, diatomic molecules possess only an axial symmetry around the internuclear

axis. Electronic molecular states are typically specified by the notation 2S+1ΛΩ. S is the electronic

spin. Ω and Λ are the projections along the internuclear axis1 of the total electronic angular

momentum Je and the total electronic orbital angular momentum L, respectively (see Table 3.1).

Because of axial symmetry only these projections, rather than L and Je, can be good quantum

numbers.

There are many different ways, called “Hund’s cases”, for the various momenta in molecules

to couple with one another. Each case is associated with a certain basis set of “good” quantum

numbers. In PbO we will be dealing mostly with Hund’s case (a) for the ground state, X, and

Hund’s case (c) for the excited a(1) state.

In Hund’s case (a) L is coupled to the molecular axis by the strong internuclear electric field (see

Fig. 3.2). As a consequence only its projection, Λ, is a good quantum number. S is not strongly

affected by the internuclear electric field. However, more typically for low rotational levels, its

coupling to Λ is stronger than its coupling to the rotational angular momentum, N. Hence, the

projection on the internuclear axis, Σ, of S is also a good quantum number. The projections Λ and

Σ add vectorially to give Ω.

Hund’s case (c) often occurs in heavier molecules where spin-orbit interactions may couple L

and S more strongly to each other than the internuclear axis (see Fig. 3.3). In this case only Ω is a

good quantum number. These states are given notation such as a(1), where a is the electronic state

label, and the value in parentheses is Ω. Hund’s case (a) states are specified by the 2S+1ΛΩ notation

1The internuclear axis, denoted by n̂, is usually defined to be in the direction of the molecular electric dipole moment in
the molecule fixed frame.



CHAPTER 3. MOLECULAR CALCULATIONS 24

 
S

J
N



L

Figure 3.2: Hund’s case (a). The orbital angular momentum, L, couples strongly to the internuclear
axis. The spin angular momentum, S, is also quantized along the internuclear axis. Their respective
projections, Λ and Σ, add to give Ω, the total projection of the electronic angular momentum. Ω
and the rotational angular momentum N precess around the total angular momentum J.

mentioned above.

In both cases the projection of the electronic angular momentum, Ω, adds to the rotational

angular momentum, N, to give the total angular momentum, J.

3.3 States with no internal angular momentum

Quantum mechanical calculations for molecular states with no internal angular momentum about

the internuclear axis, such as 1Σ states, are similar to those for atomic systems. For both, the angular

wave functions are spherical harmonics. The methods below will be used for the ground state of

PbO, X(0+), which is essentially a 1Σ state.2

2See Section 4.5.1 for more details on the state composition.
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Figure 3.3: Hund’s case (c). The orbital angular momentum, L, and the spin angular momentum, S,
are strongly coupled. Only the projection on the internuclear axis, Ω, of the total electronic angular
momentum, Je, is defined. Ω and the rotational angular momentum, N, precess around the total
angular momentum J.

3.3.1 Stark and Zeeman effects

Since the rotational levels of a 1Σ state are non-degenerate there is no first order Stark effect. The

second order Stark shift is

∆E(2)
St =

∑
J′m′,Jm

∣∣∣∣〈J′,m′
∣∣∣−µ · E ∣∣∣ J,m

〉∣∣∣∣2
EJ,m − EJ′,m′

, (3.5)

whereµ is the electric dipole moment operator andE is the laboratory electric field. Matrix elements

with nearby rotational levels dominate since the energy difference in the denominator is typically

orders of magnitude larger for vibrational or electronic transitions. Sinceµ is a vector operator, there

are only non-zero matrix elements for J′ = J± 1 . The matrix elements can be explicitly evaluated as

integrals of the eigenstates (e.g., see Townes and Schawlow [69, Section 10-2]) which are spherical

harmonics, |J,m〉 = Ym
J (θ, φ). For an electric field, E = Eẑ, we have (see Fig. 3.4),

∆E(2)
St =

∣∣∣∣〈J − 1,M
∣∣∣−µ · E ∣∣∣ J,M

〉∣∣∣∣2
2Br J

−

∣∣∣∣〈J + 1,M
∣∣∣−µ · E ∣∣∣ J,M

〉∣∣∣∣2
2Br(J + 1)

=
µ2
E

2

2Br

{
J2
−M2

J(2J − 1)(2J + 1)
−

(J + 1)2
−M2

(J + 1)(2J + 1)(2J + 3)

}
=

µ2
E

2

2Br J(J + 1)
J(J + 1) − 3M2

(2J − 1)(2J + 3)
(3.6)
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Figure 3.4: Stark effect for the first three rotational lines in a 1Σ state. The Stark shifts shown are
greatly exaggerated relative to the rotational splitting for typical laboratory electric fields.

except for J=0, which is a special case,

∆E(2)
St

∣∣∣∣
J=0

= −
µ2
E

2

6Br
. (3.7)

We will use these results in 7.5 when we discuss a microwave absorption measurement in the

X(0+) state using Stark modulation.

The Zeeman effect in a 1Σ state is zero to first order since there are no unpaired electronic spins.

In addition, for our experiment the isotope we typically use, Pb208O16, has no nuclear spins. There

are higher order effects from molecular rotation and mixing of electronic states, but they can be

neglected in our experiment.

3.4 Hund’s case (c) states with internal angular momentum

For molecular states with internal angular momentum, calculations are a little more involved.

Much of the difficulty lies in the fact that the internal angular momenta, i.e. Σ,Λ,Ω, are defined as

projections on the internuclear axis which is rotating in the laboratory frame. Changing bases from

the laboratory frame to molecule fixed frame simplifies the calculation of matrix elements. Landau
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and Lifshitz [70, (110.6)] show that

〈
J′,Ω′,m′

∣∣∣∣ T(k)
q,lab

∣∣∣∣ J,Ω,m
〉

= iJ′ J(−1)Ω−m
√

(2J′ + 1)(2J + 1)
∑

q′

 J′ k J

−Ω′ q′ Ω


 J′ k J

−m′ q m

 〈Ω′ ∣∣∣∣ T(k)
q′,mol

∣∣∣∣Ω〉
, (3.8)

where the matrix elements on the left and right hand sides are in the laboratory and molecular fixed

frames respectively. T(k)
q is the qth component of a rank k spherical tensor. Equivalently one can use

the Wigner-Eckert theorem

〈
J,m′,Ω′

∣∣∣∣ T(k)
q,lab

∣∣∣∣ J,m,Ω
〉

= (−1)J′−m′

 J′ k J

−m′ q m

 〈J′,Ω′
∥∥∥ T(k)

lab

∥∥∥ J,Ω
〉

(3.9)

and the relation (Brown and Carrington [71, Appendix 5.1])

〈
J′,Ω′

∥∥∥ T(k)
lab

∥∥∥ J,Ω
〉

=
∑

q′
(−1)J′−Ω′

√
(2J′ + 1)(2J + 1)

 J′ k J

−Ω′ q′ Ω

 〈Ω′ ∣∣∣∣ T(k)
q′,mol

∣∣∣∣Ω〉
. (3.10)

For future reference let us calculate a few useful matrix elements. Consider the matrix element of a

rank-1 spherical tensor for ∆Ω = 0,

〈
J′,m′,Ω

∣∣∣∣ T(1)
q,lab

∣∣∣∣ J,m,Ω
〉

= (−1)2J′−m′−Ω′
√

(2J′ + 1)(2J + 1)

 J′ 1 J

−m′ q m


×

 J′ 1 J

−Ω 0 Ω

 〈Ω ∣∣∣∣ T(1)
0,mol

∣∣∣∣Ω〉
. (3.11)

Table 3.2 summarizes the non-zero matrix elements of a rank 1 tensor for |Ω| ≥ 1.

3.4.1 Electric dipole operator

For matrix elements diagonal in Ω we need only the zeroth component of the electric dipole operator

in the molecular frame. The z-axis of the molecular frame is by definition the internuclear axis,
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Table 3.2: Hund’s case (c) matrix elements for rank-1 tensor

J′ m′ Matrix element
〈
J′,m′,Ω

∣∣∣ T(1)
m′−m

∣∣∣ J,m,Ω
〉

J m
mΩ

J(J + 1)

J + 1 m
1

J + 1

√
[(J + 1)2 −m2] [(J + 1)2 −Ω2]

(2J + 1)(2J + 3)

J m ± 1 ±
Ω

J(J + 1)

√
J(J + 1) −m(m ± 1)

2

J + 1 m ± 1
1

J + 1

√
(J + 1 ±m)(J + 2 ±m) [(J + 1)2 −Ω2]

2(2J + 1)(2J + 3)

Ẑ = n̂. Therefore µe,0 = µen̂ and the molecular frame matrix element is trivially

〈
Ω

∣∣∣−µe,0

∣∣∣Ω〉
=

〈
Ω

∣∣∣−µen̂
∣∣∣Ω〉

= −µe. (3.12)

Thus electric dipole matrix elements are given by the values in Table 3.2 multiplied by −µe.

3.4.2 Magnetic dipole operator

The magnetic dipole term in the Hamiltonian for an atomic state with no orbital angular momentum

can be written as HB = −µB ·B = gµBS ·B. For a Σ state one might naı̈vely expect that since Λ = 0, we

have Ω = S and therefore HB = gµBΩ · B. However the orbital angular momentum perpendicular

to the internuclear axis is not necessarily zero. In theory one could expand the molecular state as

a linear combination of atomic orbitals and determine an effective g factor from the J-dependent

g factors of the atomic orbitals. In practice it is often easier to define an effective
←→
G tensor in the

molecular frame,

←→
G =


G⊥

G⊥

G‖

 . (3.13)

We write the magnetic interaction as µBB
←→
G Je, where G⊥(G‖) is the effective g-factor perpendicu-

lar(parallel) to the internuclear axis in the molecule frame. We can treat the product
←→
G Je as our
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rank-1 tensor in the molecular frame. The matrix elements diagonal in Ω are then

〈
Ω

∣∣∣∣←→G Je

∣∣∣∣Ω〉
=

〈
Ω

∣∣∣µBG‖ Je,Z

∣∣∣Ω〉
= µBG‖Ω. (3.14)

3.5 The a(1)[3Σ+] state of PbO

In this section we delve into the details of the a(1)[3Σ+] state used in the actual EDM experiment.

We follow the notation and much of the discussion in [29].

The a(1) state of PbO is well described by Hund’s case (c). The two projections of the electronic

angular momentum on the internuclear axis, Ω = ±1, are nominally degenerate. However, Coriolis

coupling between Ω and the rotational angular momentum split the symmetric and antisymmetric

superpositions of these projections. Thus, each rotational line forms an Ω-doublet with an energy

splitting of ∆ΩJ = qJ(J + 1), where q = 5.6 MHz [72] is much smaller than the rotational constant

Br = 7.054 GHz [68] (see Fig. 3.5).

The field-free states are eigenstates of the parity operator. Since, in general [73],

P |J,M,Ω〉 = (−1)J−Ω
|J,M,−Ω〉 , (3.15)

the eigenstates are superpositions of the signed Ω states (see Fig. 3.6). States with parity (−1)J are

labeled e states while states with parity −(−1)J are f states [73]. We will see in Section 3.5.5 that due

to Ω-doubling, the e states are always higher in energy. We denote them by

|J,M, |Ω| = 1, e〉 =
1
√

2
(|J,M,Ω = +1〉 − |J,M,Ω = −1〉) . (3.16)

The f states, always lower in energy, are denoted by

∣∣∣J,M, |Ω| = 1, f
〉

=
1
√

2
(|J,M,Ω = +1〉 + |J,M,Ω = −1〉) . (3.17)

In the Stark and Zeeman calculations below, the labeling of e and f states is specific to Ω = 1.

However, other than this labeling, the results hold for all states with Ω ≥ 1.
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Ω1
Δ

J=1-, e
J=1+, f

H
L

0 +1M = -2 +2-1

Ω2
Δ

J=2+, e

J=2-, f

H

L

...

4Br

Figure 3.5: The a(1) rotational levels. In a given vibrational level of the a(1) state, the rotational
levels have energies Br J(J + 1), with rotational constant Br � 2π × 7.054 GHz. In the absence of an
electric field, Ω-doubling separates the parity eigenstates, e and f , of each rotational sublevel by
∆ΩJ = qJ(J + 1), where q � 2π × 5.6 MHz. The labels H and L denote the higher and lower energy
level of the Ω-doublet regardless of electric field. Note the energy splittings are not drawn to scale.
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0 +1M=-1 Ω1
Δ

J=1-, e

J=1+, f

H

L

Figure 3.6: Field-free J=1 state. In the absence of magnetic and electric fields, the parity eigenstates,
e and f , of the a(1), J = 1 state are split by the Ω-doubling energy, ∆Ω1 . The parity states are
symmetric or antisymmetric superpositions of states where Ω, the projection of the electronic
angular momentum on the internuclear axis, is defined.

3.5.1 Stark effect

The Stark effect in the a(1) state is significantly different than in the X(0+) state. The e and f states in

each Ω-doublet pair can mix and repel in an electric field because they are of opposite parity. Thus,

for the same electric field, the a(1) Stark shift is larger than that in the X(0+) state by the ratio of the

rotational splitting to the Ω-doublet splitting or nearly 3 orders of magnitude.

Using Table 3.2, Eq. (3.16), and Eq. (3.17) the Stark Hamiltonian for each M sublevel in the e, f

basis is

H(J,M)
St =


∆ΩJ

2
−µaEM |Ω|

J(J + 1)
−µaEM |Ω|

J(J + 1)
−

∆ΩJ

2

 , (3.18)

where µa = 1.64 MHz V−1 cm−1 is the molecule-fixed electric dipole moment for the a(1) state [74].

Note that the M = 0 states do not mix and therefore remain parity eigenstates regardless of the

electric field.

To keep track of the states we use the label H(L) for the higher(lower) energy eigenstate regardless
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No electric field Arbitrary electric field Fully polarized

|e〉 ,
∣∣∣ f 〉 |Ω〉 , |−Ω〉 |e〉 ,

∣∣∣ f 〉 |Ω〉 , |−Ω〉 |e〉 ,
∣∣∣ f 〉 |Ω〉 , |−Ω〉 |n+〉 , |n−〉

|J,+M,H〉

1

0


 1
√

2

−
1
√

2


cos θ

2

sin θ
2


cos

(
θ
2 −

π
4

)
sin

(
θ
2 −

π
4

)
 1
√

2

−
1
√

2


 0

−1


0

1


|J,−M,H〉 “ “ “ “

 1
√

2
1
√

2


1

0

 “

|J,+M,L〉

0

1


 1
√

2
1
√

2


− sin θ

2

cos θ
2


− sin

(
θ
2 −

π
4

)
cos

(
θ
2 −

π
4

) 
 1
√

2
1
√

2


1

0


1

0


|J,−M,L〉 “ “ “ “

− 1
√

2
1
√

2


0

1

 “

Table 3.3: a(1) eigenstates in an electric field

of the field. After diagonalizing, H(L) is shifted higher(lower) in energy by

δSt =

√(
∆ΩJ

2

)2

+

(
µaEMΩ

J(J + 1)

)2

−
∆ΩJ

2
. (3.19)

For small electric fields, i.e. δSt � ∆ΩJ , this leads to the usual quadratic Stark shift

δSt ≈
1

∆ΩJ

(
µaEMΩ

J(J + 1)

)2

, (3.20)

while for large electric fields, i.e. δSt � ∆ΩJ , the Stark effect becomes linear,

δSt ≈

∣∣∣∣∣µaEMΩ

J(J + 1)

∣∣∣∣∣ − ∆ΩJ

2
. (3.21)

Table 3.3 summarizes the eigenstates for arbitrary electric fields,E = Eẑ, |E| ≥ 0, using the mixing

angle notation described in Appendix A with x = ∆ΩJ , y =
−µaEM|Ω|

J(J+1) , and θ = arctan y
x . Note that

for E > 0 the mixing angle goes from zero to ∓π2 for ±M. From this table one can see that at high

electric fields the field-free parity states fully mix and the signed Ω basis states become the energy

eigenstates3 (see Fig. 3.7).

3The signs given in Table 3.3 differ from those in [29] and agree with [52]. The relative signs between the states in a given
basis set are necessary to correctly change bases.
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δSt
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Δ

Figure 3.7: The a(1), J = 1 state in an electric field. At high electric fields, δSt ≈
1
2 (µaE − ∆Ω1 )� ∆Ω1 ,

the lower(higher) energy state, L(H), for the M = ±1 sublevels is oriented with(against) the electric
field.

Table 3.3 also defines new basis states,
∣∣∣J,M,n+(−)

〉
, corresponding to the states fully polarized

with(against) the electric field to give a clearer physical picture and to ease later notation. Using

Table 3.2, the average direction of the internuclear axis for a fully polarized state in the laboratory

frame is 〈n̂〉 = MΩ
J(J+1) ẑ. Therefore states with MΩ > 0 correspond to the |n+〉 state while states with

MΩ < 0 correspond to |n−〉.

To summarize,

Field-free
|J,M,H〉 = |J,M, e〉

|J,M,L〉 =
∣∣∣J,M, f

〉
Fully polarized

|J,M,H〉 = |J,M,n−〉

|J,M,L〉 = |J,M,n+〉 .

3.5.2 EDM shift

The effective electron EDM Hamiltonian, Hedm = −de · Ee f f , depends only on the relative direction

of the electron spin and the effective internal electric field of the molecule. The effective electric

field4 is typically defined such that Hedm = deEe f f Je · n̂ = deEe f f Ω [75]. Thus the size of the EDM is

4With the internuclear axis n̂ defined to be in direction of the dipole moment, µa, the internal electric field is expected to
be in the opposite direction, Ee f f = −Ee f f n̂.
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Figure 3.8: The effective polarization, P = 〈Ω〉 / |Ω|, for the J=1 and J=2 —M—=1 levels versus
applied electric field.

proportional to the expectation value of Ω in the molecular frame. Using Table 3.3, we can define

an effective polarization,

PL(H) ≡
〈Ω〉

|Ω|

= ∓
[
cos2

(
θ
2 −

π
4

)
− sin2

(
θ
2 −

π
4

)]
= ∓ sinθ

= ±

µaEM|Ω|
J(J+1)√(

∆ΩJ

2

)2
+

(
µaEM|Ω|

J(J+1)

)2
, (3.22)

where the +(−) signs are for the L(H) states (see Fig. 3.8). For arbitrary electric fields, Hedm = PdeEe f f .

For fully polarized states, Pn± = ±sgn(M).

3.5.3 Zeeman effect

Using Table 3.2, Eq. (3.14), Eq. (3.16), and Eq. (3.17), the first order Zeeman effect for a magnetic

field B = Bẑ is (see Fig. 3.9)

δZ =
〈
J,M, e( f )

∣∣∣ G‖µBBΩ
∣∣∣ J,M, e( f )

〉
=

G‖µBBMΩ2

J(J + 1)
. (3.23)
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Figure 3.9: The a(1), J = 1 state in a magnetic field. The Zeeman shift of the M = ±1 sublevel is
δZe( f ) = ge( f )µBMB, where ge( f )µB ≈ 2π × 1.30 MHz G−1. The g factors, ge( f ), of the parity eigenstates
differ by ≈ 1.5 × 10−3.

For notational ease5, we define the J=1 g factors, ge( f ) ≈ G‖/2 ≈ 0.86 so that

δZe( f ) = ge( f )µBMB. (3.24)

The subscripts reflect the fact that the parity eigenstates, due to Ω-doubling, have slightly different

g factors, g f − ge ≈ 1.5(4) × 10−3 [72].

We can understand this result by considering a simple vector model (refer to Fig. 3.3)6. The

magnetic moment alongΩ is by definition µΩ = G‖µBΩ. The nutation ofΩ around the total angular

momentum J gives an average magnetic moment of

µ̄J = µΩ cos (Ω, J) = µΩ
Ω√

J(J + 1)
=

G‖µBΩ2√
J(J + 1)

. (3.25)

The total angular momentum J then precesses around the magnetic field direction giving an average

magnetic moment of

µ̄B = µ̄J cos (B, J) = µ̄J
M√

J(J + 1)
=

G‖µBMΩ2

J(J + 1)
. (3.26)

3.5.4 The EDM measurement states

The EDM measurement involves comparing the energy differences, ∆n± , between the M = +1 and

M = −1 sublevels for both orientations of the molecule, n±, in a strong electric field and parallel

5Warning! This notation differs from our earlier papers, e.g. [72].
6The Stark shift can also be understood with this model.
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0 +1M = -1
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nde 2gH µB

2gL µB

- 2de Eint

+ 2de Eint
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Stark+Zeeman
Stark+Zeeman
+eEDM

Figure 3.10: The EDM measurement states. The EDM measurement involves comparing the energy
differences, ∆n± , between the M = +1 and M = −1 sublevels for both orientations of the molecule,
n±, in a strong electric field and parallel magnetic field. In the approximation, gH = gL, the difference
between the two, ∆EDM,n = ∆n+

− ∆n− = 4deEe f f , is independent of the magnetic field.
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magnetic field (see Fig. 3.10). The Stark shifts for the two magnetic sublevels are identical, while

the Zeeman and EDM shifts are opposite in sign. In addition, the EDM shift is of opposite sign

for the two orientations n±, since the direction of the internal electric field is opposite to the axis of

the molecule. Explicitly we can combine the Stark, Zeeman, and EDM shift calculations above to

express the total energy shift of a magnetic sublevel as

δn±,M = ∓δSt + gn±µBMB ± deEe f f M. (3.27)

The splitting between the M = +1 and M = −1 sublevels is then

∆n± = δn±,+M − δn±,−M = 2gn±µBB ± 2deEe f f , (3.28)

where gn± ≈ G‖/2 are the g factors for the n± levels. If gn+
= gn− the energy difference ∆EDM,n = ∆n+

−

∆n− = 4deEe f f is independent of magnetic field. The cancellation of magnetic effects demonstrates

that the two orientations of the molecule act as co-magnetometers.

As we will discuss in Section 3.5.6, the gn± factors are actually different at the 10−3 level and

depend slightly on the electric field. In this case we have ∆EDM,n = 2∆gµBB + 4deEe f f , where

∆g(E) = gn+
(E) − gn− (E). However, with further experimental reversals, for example B → −B, we

can eliminate any magnetic field dependence (see Section 6.4).

As an aside, we note that once polarized, all J levels exhibit the same EDM shift. However,

the J = 1 state is used for two main reasons. First, it has the smallest Ω-doublet splitting and

therefore requires the smallest electric field for polarization. The field required for substantial

polarization of all non-zero magnetic sublevels is proportional to J4, making polarization of even

J = 2 technically difficult. Smaller electric fields reduce leakage currents between the electrodes

which can lead to systematic effects. Second, the J = 1 state can be excited from the single quantum

state |X, J = 0,m = 0〉. The excitation of multiple incoherent sublevels in higher J levels of the ground

state would generally lead to incoherent backgrounds not useful to the EDM measurement.

3.5.5 Ω-doubling

Ω-doubling stems from a “Coriolis”coupling between the rotational angular momentum, N, and

the electronic angular momentum, Je. In Hund’s case (c) the rotational quantum number N is not a
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good quantum number. Expressing N in terms of the J and Je the rotational energy is

Hrot = BrN2 = Br(J − Je)2 = Br J2 + Br J2
e − 2BrJ · Je. (3.29)

The first term is the usual rotational energy and the second term gives a constant energy offset for

the electronic state. The last term is the coupling responsible for Ω-doubling. The most general

matrix element of this term is

M =
〈
γ′, J′,M′,Ω′

∣∣∣ J · Je

∣∣∣γ, J,M,Ω〉
, (3.30)

where γ and γ′ represent all other quantum numbers. After expanding the dot product in the

spherical basis and inserting the identity as a sum over eigenstates we have

M =
∑

q

∑
γ′′ J′′M′′Ω′′

(−1)q
〈
γ′, J′,M′,Ω′

∣∣∣ Jq

∣∣∣γ′′, J′′,M′′,Ω′′〉 〈
γ′′, J′′,M′′,Ω′′

∣∣∣ Je,−q

∣∣∣γ, J,M,Ω〉
. (3.31)

Using the Wigner-Eckert theorem twice and the relation [76, (4.168)]

∑
qM′′

(−1)q

 J′ 1 J′′

−M′ q M′′


 J′′ 1 J

−M′′ −q M

 =
δJ′ JδM′M

2J + 1
, (3.32)

we have

M =
∑

γ′′ J′′Ω′′
(−1)J−J′′ 1

2J + 1
〈
γ′, J,Ω′

∥∥∥ J
∥∥∥γ′′, J′′,Ω′′〉 〈γ′′, J′′,Ω′′ ∥∥∥ Je

∥∥∥γ, J,Ω〉
. (3.33)

Using the formula [76]

〈
γ′, J,Ω′

∥∥∥ J
∥∥∥γ′′, J′′,Ω′′〉 = δγ′γ′′δJJ′′δΩ′Ω′′

√
J(J + 1)(2J + 1), (3.34)

and lab to body-fixed frame transformation Eq. (3.10) for the Je reduced matrix element we have

M =
∑

q

(−1)J−Ω′
√

J(J + 1)(2J + 1)

 J 1 J

−Ω′ q Ω

 〈γ′,Ω′ ∣∣∣ Je,q

∣∣∣γ,Ω〉
. (3.35)

First, we consider diagonal matrix elements that could lead to a first order energy shift. The
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field-free parity eigenstates [71] are

|J,M, |Ω| ,P = ±〉 =
1
√

2

(
|J,M,Ω〉 ± (−1)J−Ω

|J,M,−Ω〉
)
. (3.36)

Since Je is a vector operator, matrix elements between states with Ω and −Ω, having ∆Ω = 2, must

vanish. For the field-free parity eigenstates we are left only with the diagonal elements which also

vanish since

〈J,M, |Ω| ,P | J · Je | J,M, |Ω| ,P〉 ∝
〈
Ω

∣∣∣ Je,0

∣∣∣Ω〉
+

〈
−Ω

∣∣∣ Je,0

∣∣∣−Ω
〉

= Ω + (−Ω) = 0. (3.37)

Next we consider off-diagonal elements which lead to a second order energy shift. Since Je is

a vector operator there are non-vanishing matrix elements between states with ∆Ω = 0,±1. The

closest electronic state to the a(1)3Σ+ state is the b(0−)3Σ+ state. The splitting between these two

states is actually quite small; on the order7 of 300 cm−1 [77–79]. All other electronic states that could

mix are much farther away and contribute only negligibly to the Ω-doubling.

As an aside, one can roughly explain the small splitting between these states by analogy to the

atomic 3S1 state. Since the electric field does not act on the spin degree of freedom there is no tensor

Stark shift to lowest order for the 3S1 state. Similarly the 3Σ1 and 3Σ0 molecular states, which are

analogous to the m = ±1 and m = 0 sublevels of the atomic state, split only due to a second order

spin-orbit coupling.

Only levels in a(1) and b(0−) with the same angular momentum and parity are mixed. Since the

b(0−) levels have parity −(−1)J and are higher in energy, the f levels of a(1) are shifted downward.

Using Eq. (3.35), the second order shift is8

∆E =

∣∣∣〈J,Ω = 0
∣∣∣−2BrJ · Je

∣∣∣ J, |Ω| = 1, f
〉∣∣∣2

Ea(1) − Eb(0−)

=
(2Br)2 J(J + 1)

∣∣∣∣ 1
√

2

(〈
Ω = 0

∣∣∣ Je,−1

∣∣∣Ω = 1
〉
−

〈
Ω = 0

∣∣∣ Je,+1

∣∣∣Ω = −1
〉)∣∣∣∣2

Ea(1) − Eb(0−)
. (3.38)

7There is significant discrepancy and some uncertainty over the identification of the b state in the literature.
8Note that spherical tensor components are related to the usual raising and lowering operators by Je,±1 = ∓ 1

√
2

Je,±.
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If we assume Je = 1, which, strictly speaking, is not defined for Hund’s case (c) [80], we find

∆EΩ =
4B2

r J(J + 1)
Ea(1) − Eb(0−)

= qJ(J + 1). (3.39)

Using the experimental values of Br = 0.235 cm−1 [68] and Ea(1) − Eb(0−) ≈ −300 cm−1 [77] gives

q = −22.1 MHz. The discrepancy with the experimental value of q = −5.6 MHz [72] could be due

to either misidentification of the b(0−) levels or our overly simple model that neglects mixing with

other states.

3.5.6 Electric field dependence of g factors

As was hinted at in Section 3.5.4, it was found experimentally (see Section 6.3.3) that the g factors,

gH(L), of the |J = 1,M,H(L)〉 states are not equal and depend slightly on the electric field. The

difference in the field-free case, ∆g = g f − ge = 1.5 × 10−3, was expected and has the same origin as

the Ω-doubling: mixing of the f levels with the b(0−) state. It was also expected that the mixing of

the |e〉 and
∣∣∣ f 〉 levels in electric field would reduce the g factor difference. Using Table 3.3 one can

show that

∆g(E) = gL(E) − gH(E) = (g f − ge) cosθ = ∆g(0)
∆Ω1√

(µaE)2 + (∆Ω1 )2
. (3.40)

Thus the g factor difference should approach zero as the states fully mix.

However, the J = 1 and J = 2 levels of the a(1) state are also slightly mixed by an electric field.

Using perturbation theory we can write the mixed state as

|J∗,M,Ω〉 = |J,M,Ω〉 + η(M) |J + 1,M,Ω〉 , (3.41)

where η(M) =
〈
J + 1,M,Ω

∣∣∣µa · E
∣∣∣ J,M,Ω

〉
/2(J + 1)Br. Using Table 3.2 and Eq. (3.14), the Zeeman

shift of the mixed state,9 to first order in µaE/Br, is

〈
J∗,M,Ω

∣∣∣−µ · B ∣∣∣ J∗,M,Ω
〉

=
〈
J,M,Ω

∣∣∣−µ · B ∣∣∣ J,M,Ω
〉

+ 2η(M)
〈
J + 1,M,Ω

∣∣∣−µ · B ∣∣∣ J,M,Ω
〉

=
G‖µBBM
J(J + 1)

+
G‖µBBM
J(J + 1)

µaEΩJ2(J + 2)
[
(J + 1)2

−M2
]

BrM(J + 1)2(2J + 1)(2J + 3)

(3.42)
9Note that in both [52, 81] a factor of J+1 is missing in the denominator.
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Recalling that MΩ = ±1 for the |n±〉 states, the effective g factors for the polarized J = 1 states are

then

gn± ≈
G‖
2

(
1 ±

3µa |E|

20Br

)
. (3.43)

Combining our results by treating the mixing between the J = 1 and J = 2 as a small perturbation,

the g factor difference to first-order for all fields is

∆g(E) = gL(E) − gH(E) = cosθ(g f − ge) + sinθ
3µaE

20Br
(g f + ge)

=
∆Ω1 (g f − ge) +

3(µaE)2

20Br
(g f + ge)√

(∆Ω1 )2 + (µaE)2
. (3.44)

Fig. 3.11 shows the excellent agreement between theory and experiment. This data was obtained by

populating both the higher and lower energy EDM states at large electric and magnetic fields. The

different g factors for the higher and lower energy levels lead to different Zeeman shifts. Because

the quantum beat frequencies are proportional to the Zeeman shift the differing beat frequencies

cause “beating” of the beats. From the time of the first node in the envelope of the quantum beats,

which occurs when the two beat frequencies are out of phase, one can determine the beat frequency

difference.

Note it is inevitable that the change in g factor due to rotational mixing is on the order of

and slightly larger than the change due to Ω-doubling. One can show that due to Ω-doubling,

δg ≈ gBr/∆E, where ∆E is the energy difference between the Ω = ±1 and Ω = 0 states. Rotational

mixing gives δg ≈ gµaE/Br. However, when the states are fully polarized µaE >> ∆Ω ≈ B2
r/∆E.

Therefore rotational mixing gives δg > gBr/∆E.
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Figure 3.11: Difference between g factors. The dotted line is the theoretical calculation (with no free
parameters) of the fractional difference in g factors, ∆g/ḡ = 2(gL − gH)/(gL + gH), versus applied
electric field. The data points were obtained by populating both the higher and lower energy EDM
states at large electric and magnetic fields. The different g factors for the higher and lower energy
levels lead to different Zeeman shifts. Because the quantum beat frequencies are proportional to
the Zeeman shift the differing beat frequencies cause “beating” of the beats. From the time of the
first node in the envelope of the quantum beats, which occurs when the two beat frequencies are
out of phase, one can determine the beat frequency difference.



Chapter 4

Electron EDM enhancement in atoms

and molecules

One might expect that any external electric field is shielded from an electron in an atom or molecule

by polarization of its electron cloud. Even though this is strictly correct, relativistic effects can

still lead to an enhancement of the electron EDM in heavy atoms or molecules. In atoms, this

enhancement is dependent upon polarization of the atom through mixing of s and p orbitals by an

external electric field. One can roughly estimate the size and scaling of this effect by calculating

the probability for an electron to spend time in the enormous electric field near the nucleus. For

simple cases, such as the alkali atoms, the enhancement can be calculated fairly well using analytic

relativistic wave functions. Molecular calculations are more complex since there are no simple

analytic expressions for molecular orbitals. Instead one expands the molecular orbitals in an

appropriate basis set, such as the individual atomic orbitals. The s and p atomic orbitals can then

be mixed in a molecular orbital by the strong internuclear electric field. A much smaller external

electric field is needed only to orient the molecules. To calculate the EDM enhancement in both

heavy atoms and molecules, one can use ab initio quantum chemistry methods which attempt

to determine the s and p orbital mixing in a given electron configuration from first principles.

Alternatively, experimental data on hyperfine constants and fine structure splittings can constrain

s and p contributions and be used in a semi-empirical estimate of the EDM enhancement factor.

43
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4.1 Schiff’s theorem

At first glance, the idea of using an electron in a neutral atom or molecule for an electron EDM

search seems unpromising. From simple electrostatics, for any given electron, an external electric

field is exactly canceled by the field due to the other electrons in the atom or molecule. If this were

not the case the electron would never reach an equilibrium position. More formally one expects

that there can be no first order contribution, linear in the electric field, to an atomic energy level

from an EDM. This argument is known as Schiff’s theorem[82]. However, as we will see below,

relativistic effects can actually lead to a violation of Schiff’s theorem and an effective atomic or

molecular dipole moment larger than the electron EDM. In atomic systems the ratio of the dipole

moments is termed the “enhancement factor”.

4.1.1 Shielding of the electric field

One can quickly prove Schiff’s theorem by using Ehrenfest’s theorem[83],

d
dt
〈A〉 =

1
i~

〈
ψ

∣∣∣ [A,H]
∣∣∣ψ〉

, (4.1)

where A is an observable and H is the particle Hamiltonian. If |ψ〉 is an eigenstate of the Hamiltonian

the right-side vanishes (regardless of whether A commutes with H) and we see that there is no time

dependence for the expectation of any observable in an eigenstate; hence the term “stationary

state”. For a non-relativistic electron in an electrostatic potential, Φ, the Hamiltonian is H =
p2

2m − eΦ.

Considering an energy eigenstate and using Eq. (4.1) with A = p we have1

〈F〉 =
d
dt

〈
p
〉

=
1
i~

〈[
p,H

]〉
= e 〈[∇,Φ]〉 = e 〈∇Φ〉 = −e 〈E〉 = 0. (4.2)

For an atomic system we can split the electric field into internal and external parts, E = Ei +Ee and

thus show

〈Ei〉 = − 〈Ee〉 . (4.3)

To show this result also holds for relativistic particles we start with the covariant form of the

1Strictly speaking p should be replaced by the kinematical momentumΠ = p− eA but we are considering the case A = 0.



CHAPTER 4. ELECTRON EDM ENHANCEMENT IN ATOMS AND MOLECULES 45

Dirac equation in the presence of an electromagnetic field,

[
−i~cγµ(∂µ − ieAµ) + mc2

]
ψ = 0, (4.4)

where γµ are the Dirac matrices, Aµ = ( Φ
c ,A) is the electromagnetic four-potential, and ψ is a

four-component Dirac bispinor. Multiplying on the left by γ0 and rearranging we find

{
c
[
α ·

(
p − ieA

)]
− eΦ + mc2γ0

}
ψ = i~

∂ψ

∂t
, (4.5)

where α = γ0γi =
(

0 σ
σ 0

)
and we have made the substitution p = −i~∇. For a static electric field and

no magnetic field the Hamiltonian is then

H = cα · p + mc2γ0
− eΦ. (4.6)

Since p commutes with both α · p and γ0 we find, similarly to Eq. (4.2),

1
i~

〈[
p,H

]〉
= −e 〈E〉 = 0. (4.7)

4.1.2 Evasion of Schiff’s Theorem

In fact we can show that the expectation value of the energy due to an electric dipole moment also

vanishes in the non-relativistic limit. We first note that an EDM must be either aligned or anti-

aligned with the electron spin; otherwise a new quantum number would be needed. Equivalently

we could show, using the Wigner-Eckert theorem, that the expectation value of a dipole moment

is given only by its projection on the angular momentum of the system. From the energy for a

classical dipole in a field, −d ·E, we guess the quantum operator for the energy of an electric dipole

moment to be Hedm = −deΣ · E, where Σ =
(
σ 0
0 σ

)
. One can see that

〈Hedm〉 = −de 〈Σ · E〉 = −de
〈[
Σ · p,H

]〉
= 0, (4.8)

since Σ · p commutes with α · p and γ0.

Where then does the enhancement of the electron EDM come from? It turns out that our

expression for Hedm is incorrect in the relativistic case. To properly derive the operator we follow
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Commins et al. [84] and first consider the relativistic Lagrangian density for an electric dipole

moment [4],

Ledm = −i
de

2
Ψ̄σµνFµνγ5Ψ = deΨ̄ [Σ · E + iα · B]Ψ. (4.9)

Fµν = ∂µAν−∂νAµ is the usual electromagnetic tensor, σµν = i
2 (γµγν−γνγµ), and γ5 = iγ0γ1γ2γ3. One

can show this operator is P- and T-odd as expected (remembering that Ψ(x, t) P
→ γ0Ψ(−x, t) and

Ψ(x, t) T
→ γ1γ3Ψ(x,−t) [85]). Ledm is entirely analogous to the P- and T-even anomalous magnetic

moment operator LPauli = −
µB

2 Ψ̄σ
µνFµνΨ. The corresponding single-particle EDM Hamiltonian

with B = 0 is

Hedm = −deγ
0Σ · E. (4.10)

One can see that, unlike in the non-relativistic case, this operator can not be expressed as a commu-

tator with the Hamiltonian because

[
γ0,H

]
=

[
γ0,α · p

]
, 0. (4.11)

What then is the physical significance of Hedm? Since it involves a fair amount of algebra we quote

the result from Commins et al.. For the anomalous magnetic moment operator in a uniform magnetic

field one can show that

ψ†HPauliψ = −χ†B ·
(
µ −

γ

1 + γ
βµ · β

)
χ. (4.12)

If µ is the magnetic dipole moment in the rest frame, the factor in parentheses is the Lorentz

contracted dipole moment in the lab frame2. A similar derivation for Hedm gives terms analogous to

those in Eq. (4.12). Thus even though the expectation of the electric field is zero, the expectation value of

the Lorentz contracted dipole moment times the electric field is non-zero. The Lorentz contraction actually

makes the dipole moment smaller but, as we’ll see below, electric fields in atoms and molecules are

enormous. The small asymmetry due to contraction leads to an enhancement of the electron EDM

in heavy atoms and molecules.

One might be concerned that the presence of the extra term Hedm invalidates our argument about

the cancellation of the internal and external electric fields. Adding this term to the Hamiltonian in

Eq. (4.7) leads to another force term
[
p,Hedm

]
= −deγ0Σ · ∇E, analogous to the non-relativistic force

2The dimensions of the dipole are charge times length; charge is invariant under Lorentz boosts, while the length
contracts.
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on a dipole, F = d ·∇E. We find that with an external field, Ee = 100 V cm−1, an electric field gradient

of Ee f f /a0, with Ee f f ≈ 10 GV cm−1, and the limit of de . 10−27e · cm,

∣∣∣∣deγ
0Σ ·

(
∇Ee f f

)∣∣∣∣ ≈ 10−11
|eEe| . (4.13)

While this does lead to a non-zero expectation of the electric field the effect is many orders of

magnitude smaller than the effective electric field due to Lorentz contraction.

4.2 Back of the envelope estimate of the effective electric field

To estimate the effective electric field we follow the method in Section 4.8 of Budker et al. [86]. The

effective electric field that causes the enhancement of an electron EDM in atoms or molecules is

largely due from s-wave electrons near a heavy nucleus. Near the nucleus the charge is not screened

by the core electrons. For an ion with charge Z the radius of the first Bohr orbit is a0/Z. The electric

field at this radius is roughly E = Ze/r2 = Z3e/a2
0 ≈ Z3

× 5 GV cm−1.

Above we showed the effective field comes from the Lorentz contraction of the dipole moment,

de. A classical estimate of the velocity of the electron near the nucleus gives v ≈ Zαc. The Lorentz

contraction of the dipole moment is given by de/γ = de
√

1 − v2/c2. For v2/c2
� 1 the relative change

is approximately 1
2 v2/c2. Thus we estimate the relativistic electric field to be

Erel = 1
2 Z2α2 Z3e

a2
0

≈

(Z
8

)5

5 GV cm−1. (4.14)

For Pb, with Z = 82, this gives Erel ≈ 5 × 105 GV cm−1!

The average electric field on an electron is dominated by the time it spends near the nucleus.

We can estimate the probability for the electron to be within a volume, V, of radius, r ≈ a0/Z, by

∣∣∣ψs(0)
∣∣∣2 V ≈

Z
πa3

0

4πa3
0

3Z3 ≈
1

Z2 , (4.15)

using an estimate for the s-wave wave function at the origin from Problem 1.12 in Budker et al. [86].

The average internal electric field is then

Eint ≈ Erel
1

Z2 ≈ (Zα)2 Ze
a2

0

. (4.16)
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Finally, if the wave function of the electron is symmetric the field will average to zero. Thus we

expect there must be an additional factor, P, to account for the asymmetric polarization of the atom.

Putting it all together we have

Ee f f ≈ P × Eint ≈ P × (Zα)2 Ze
a2

0

≈ P ×
( Z

27

)3

5 GV cm−1. (4.17)

For Pb we then estimate Ee f f ≈ P × 135 GV cm−1. Ab initio [87, 88] and semi-empirical calculations

[75] give Ee f f ≈ 6− 26 GV cm−1. This suggests that the effective polarization in PbO is around 10%.3

As we will show later, atomic systems are barely polarized in laboratory strength fields (typically

P . 0.1%) and hence give orders of magnitude smaller effective electric fields.

4.3 Introduction to EDM enhancement factor calculations

In this section we briefly sketch the basic principles behind enhancement factors calculations for

atoms and molecules. We follow Meyer et al. [89] who give a very clear overview for the non-expert

in molecular structure calculations.

4.3.1 Enhancement in atoms

Returning to the relativistic operator for an EDM shift, Hedm = −deγ0Σ · E, we now consider how to

calculate its expectation value. Since we previously showed 〈Σ · E〉 = 0, we are free to subtract this

term off the relativistic operator. This leaves an operator that acts only on the lower component of

the Dirac bispinor (which vanishes in the non-relativistic limit),

Hedm = −de(γ0
− 1)Σ · E =

0 0

0 2deσ · E

 . (4.18)

Since this operator is P-odd it can only connect states of opposite parity. For example, in alkali

atoms the largest matrix element comes from mixing of the ground s state with the first excited p

state by the external electric field. To first order the new ground eigenstate is then
∣∣∣ψ〉

= cs |s〉+cp

∣∣∣p〉,

3We will see later that the low effective polarization is mostly due to the lack of s-wave character in the valence electrons,
rather than actual low polarization of the molecule
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with

cs ≈ 1, cp =

〈
s
∣∣∣ er · Eext

∣∣∣ p〉
∆Eparity

, (4.19)

where we define Ep − Es = ∆Eparity to bring out an analogy to the molecular case later. The EDM

matrix element is then

∆Eedm =
〈
ψ

∣∣∣ Hedm

∣∣∣ψ〉
=

(
cs 〈s| + cp

〈
p
∣∣∣) |Hedm|

(
cs |s〉 + cp

∣∣∣p〉)
= −2cscpde

〈
s
∣∣∣ (γ0 − 1)Σ · E

∣∣∣ p〉 = 2cscpde

〈
sL

∣∣∣ 2σ · E ∣∣∣ pL

〉
, (4.20)

where sL and pL are the lower components of the relativistic wave functions. With the constraint

c2
s +c2

p = 1, the factor cscp, and thus the EDM energy shift, is maximized for cs = cp = 1
√

2
; i.e. complete

mixing. In the atomic case the electric fields required for complete mixing can not be reached in

the laboratory. The matrix element in Eq. (4.20) can be explicitly evaluated (e.g. see section 8.2 of

Khriplovich [2]),

〈
sL,1/2

∣∣∣ 2σ · E ∣∣∣ pL,1/2

〉
=

〈
sL,1/2

∣∣∣∣∣ 2σ · (Zer̂
r2

) ∣∣∣∣∣ pL,1/2

〉
=

4(Zα)2Ze
γ(4γ2 − 1)a2

0(νsνp)3/2
≈ (Zα)2 Ze

a2
0

= Eint, (4.21)

where γ =
√

( j + 1/2)2 − Z2α2 and νs,p are the effective principal quantum numbers. Here we see the

(Zα)2 relativistic correction we guessed earlier and also note that the roughly ( j+1/2)−3 dependence

of the matrix element confirms our statement that s wave functions lead to larger enhancement.

Since the electric field is largest at the nucleus any contribution from the p3/2 wave function, which

is small at the nucleus, is usually negligible. For E = Eẑ we now have

∆Eedm ≈ 2cscpde(Zα)2 Ze
a2

0

≈

〈
s
∣∣∣ ez

∣∣∣ p〉Eext

∆Eparity
2deEint. (4.22)

There are two ways to interpret this. First, one can group deEint together and consider the energy

shift as being due to the electron EDM in the internal field of the atom suppressed by an effective

polarization of the atom. The first order Stark shift of the ground state (neglecting higher lying

states) is

EStark =
〈
ψ

∣∣∣ er · Eext

∣∣∣ψ〉
= 2cscp

〈
s
∣∣∣ ez

∣∣∣ p〉Eext ≈
2
(〈

s
∣∣∣ ez

∣∣∣ p〉Eext

)2

∆Eparity
, (4.23)
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so we can rewrite the EDM energy shift as

∆Eedm ≈

√
2Estark

∆Eparity
deEint. (4.24)

The Stark shift in atoms is 1
2αE

2 where α is the polarizability. For example, the polarizability of the

ground state of cesium, a popular atom for EDM searches, is ∼ 400a3
0[90]. The Stark shift in cesium

is then

EStark ≈
400

2
a3

0E
2
( 1 V

1 cm

)2

≈
200

e2/a0

( a0

1 cm

)2
(1 eV)2

E
2
≈ E

2
× 2 × 10−18 eV, (4.25)

where E is the electric field in V cm−1. The cesium D1 transition energy is on the order of 1 eV so

for the largest lab fields of 50 kV cm−1 the suppression factor is

√
2EStark

∆Eparity
≈

√
2 × (5 × 104)2 × (2 × 10−18 eV)

1 eV
≈ 1 × 10−4. (4.26)

A second way to interpret Eq. (4.22) is to pull out the external electric field term,

∆Eedm ≈

2
〈
s
∣∣∣ ez

∣∣∣ p〉
∆Eparity

Eint

 deEext, (4.27)

and consider the term in brackets to be the “EDM enhancement factor.”

4.3.2 Enhancement in molecules

While molecular structure is much more complicated than atomic structure the EDM enhancement

still comes from the same mixing of a s and p orbital on a heavy atom. Instead of an external

electric field causing the mixing, one can roughly imagine that the internuclear electric field mixes

the atomic orbitals that make up a molecular orbital.

Molecular orbitals can be specified by the projection of the orbital angular momentum of the

electron on the internuclear axis. For example σ orbitals, with an orbital angular momentum

projection of zero, are the analog of atomic s orbitals. A molecular σ orbital can be a linear

combination of s, p, and higher momentum atomic orbitals with orbital angular momenta projections

on the internuclear axis of zero. More specifically, as we will discuss in Section 4.5.2, the appropriate
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linear combination for a σ orbital is

|σ±ω〉 = cs

∣∣∣6s1/2,±ω
〉

+ cp

∓ 2ω
√

3

∣∣∣6p1/2,±ω
〉

+

√
2
3

∣∣∣6p3/2,±ω
〉 + cd

(
. . .

)
+ . . . (4.28)

Here ω refers to the projection of the total angular momentum on the molecular axis. Note that the

normalization condition is relaxed, c2
s + c2

p ≤ 1. Substituting this into Eq. (4.20) as
∣∣∣ψ〉

gives

∆Eedm = ±
4ω
√

3
cscpde

〈
s1/2

∣∣∣ 2σ · E ∣∣∣ p1/2
〉
≈ ±

4ω
√

3
cscpdeEint. (4.29)

As in the atomic case the maximum possible value is with full mixing, cs = cp = 1/
√

2 (and no

admixtures of higher angular momentum states). Note that cs and cp, representing mixing of the

atomic orbitals, are truly constants of the molecular orbital, independent of the external electric

field, unlike in the atomic case.

4.3.3 Molecules do NOT have permanent EDMs

Given the innate mixing of s and p orbitals in a molecular orbital one might wonder why an electric

field is needed at all in a molecular electron EDM search. The answer to this question also touches

upon a common misconception from high school chemistry: the ball-and-stick picture of a molecule

with its attendant “permanent” electric dipole moment. We have already shown that permanent

electric dipole moments violate T and P violation so how do we reconcile this picture?

In the absence of an electric field energy eigenstates of a molecule must be parity eigenstates.

Since parity flips the direction of the internuclear axis, the parity eigenstates we should be pictur-

ing for molecules are symmetric and anti-symmetric combinations of our ball-and-stick molecule

pointing in opposite directions (see Fig. 4.1. Applying an electric field mixes the parity eigenstates.

When fully mixed we arrive back at our picture of the ball-and-stick molecule. The state with its

dipole moment polarized along the electric field lowers in energy and, as we would expect, the

state polarized against it rises in energy. We will see later that full polarization occurs when the

Stark shift exceeds the energy splitting between the parity eigenstates.

For diatomic molecules this splitting can be anywhere from sub-hertz to the rotational energy

scale of gigahertz. For polyatomic molecules opposite parity states are usually nearly degenerate.
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SdeP( )= Sde

SdeP( )=Sde± Sde( )Sde±±

Figure 4.1: Parity eigenstates. In the absence of electric fields, molecules are in parity eigenstates.
Since parity operating on a “ball-and-stick” molecule flips the internuclear axis and leaves the
electron spin unchanged this can not be a parity eigenstate. The parity eigenstates are superpositions
of both orientations.

Laboratory electric fields can readily generate these Stark shifts to orient the molecules.4

We can similarly see that the effect of an electron EDM must be zero in the field free parity eigen-

states. Since the EDM has a fixed orientation relative to the spin, which does not flip under parity,

parity eigenstates are superpositions of the EDM pointing both along and against the internuclear

electric field.

4.4 Overview of ab initio methods

In Section 4.3.2 we saw that the main task in a molecular enhancement factor calculation is to

determine the mixing of the atomic s and p orbitals in a molecular orbital, represented by the

constants cs,p in Eq. (4.29). In this section we discuss the ab initio method used by Meyer et al.

[89] to calculate EDM enhancement factors in many molecules and molecular ions of interest to

experimentalists. Their methods are generic to many ab initio calculations and an overview serves

4 Intramolecular electric fields experienced during collisions are probably enough to orient molecules with small splittings
between parity states during chemical reactions. However, it is more likely that the ball-and-stick picture works well in
chemistry because of the timescale of collisions in liquids is faster than the rotational period of molecules. The molecules
see only a quick snapshot of each other, oriented in a specific direction. Quantum mechanically the molecules are in a
superposition of several rotational states, which alternate in parity, spanning an energy given by the inverse of the collision
timescale.
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Table 4.1: Ab initio methods

Name Acronym Description

Hartree-Fock or self-consistent field SCF Varies the molecular orbitals and or-
bital occupation to find the ground
state configuration

Multi-configurational self-consistent field MCSCF Varies the molecular orbitals and
weights of several configurations to
find both ground and excited config-
urations

Configuration interaction CI Varies the weights of configurations
generated by a fixed number of exci-
tations from the ground state configu-
ration

Multireference configuration interaction MRCI CI using several “reference” configura-
tions

Relativistic configuration interaction RCI CI using relativistic orbitals; implicitly
finds spin-orbit mixing

Coupled cluster CC Similar to CI but iterative rather vari-
ational. Explicitly uses all excitations
due to the first n-electron excitation op-
erators, with n usually 2 or higher.

as a good introduction to the field.

Meyer et al. begin with a Hartree-Fock or self-consistent field (SCF) calculation of the ground

state wave function and energy. The basic idea is to use the variational method on a multi-electron

wave function expanded in an appropriate basis set. Each single-electron molecular orbital, |φ j〉 is

expressed as a superposition of the basis wave functions | fi〉

|φ j〉 =
∑

i

c ji | fi〉. (4.30)

Atomic orbitals can be used for the basis functions but many ab initio methods use more compu-

tationally efficient basis sets such as superpositions of Gaussian wave functions centered on each

atom. These basis sets have often been optimized beforehand by atomic calculations. Next a given

configuration, |Φk〉, is expressed as an antisymmetrized product of the single-electron molecular

orbitals. Antisymmetrization implicitly enforces the Pauli principle and can be expressed with a
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Slater determinant,

|Φk〉 = A
∏

j={ jk1,..., jkN}

φ j = A
∏

j={ jk1,..., jkN}

∑
i

c ji | fi〉 =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ jk1 (x1) φ jk1 (x2) · · · φ jk1 (xN)

φ jk2 (x1) φ jk2 (x2) · · · φ jk2 (xN)
...

...
. . .

...

φ jkN (x1) φ jkN (x2) · · · φ jkN (xN),

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.31)

where the jkn are a set of indices representing the occupied orbitals for the kth configuration. The

Hartree-Fock method finds the configuration, i.e. the occupied orbitals given by jkn, and the orbital

composition given by c ji, that minimizes the energy.

Implicit in the Hartree-Fock method is the assumption that the total wave function can be

represented by a single product of one-electron orbitals only. Correlations between the position

of electrons, which are a non-separable function of more than one electron coordinate, can not be

accounted for. Most methods that try to account for correlation add more configurations to the

wave function. Although usually prohibitive computationally, if every possible configuration built

from one-electron orbitals is included, electron correlations can be fully accounted for. This method

is referred to as full configuration interaction (full CI), and can be used only for the smallest of

systems.

Meyer et al. next do a multiconfiguration self-consistent field calculation (MCSCF). Starting with

the Hartree-Fock configuration as an initial guess, the energy of the sum of several configurations

is simultaneously minimized,

∣∣∣ΦMCSCF
〉

=
∑

k

dk |Φk〉 =
∑

k

dkA
∏

j={ jk1,..., jkN}

∑
i

c ji | fi〉. (4.32)

Now excited state energies can be estimated by looking at the energy of a given configuration in

the sum with the desired symmetry. Next they perform a multireference configuration interaction

(MRCI) calculation. Configurations representing one and two electron excitation from the now

fixed MCSCF configurations are added,

∣∣∣ΨMRCI
〉

=
∑

m

hm

∣∣∣ΦMCSCF
m

〉
. (4.33)

The energy is again minimized by varying the hm while holding the dk, jkn, and c ji all fixed. After
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this spin-orbit mixing is calculated for configurations with the same Ω in terms of a mixing angle χ,

|ΦSO〉 = cosχ |Φa,Ω〉 + sinχ |Φb,Ω〉 . (4.34)

At the end of these calculations one has a huge expansion for the molecular wave function. In

large scale calculations the number of basis states can be in the tens of millions! To find cs,p the

same MCSCF and MRCI calculations are performed for the atomic states. Then one finds the

configuration term, |ΦEDM〉, in the molecular expansion representing the state of interest and takes

its overlap with the atomic s and p orbitals expanded in the same basis

cs,p = h0 cosχ
〈
ΦEDM

∣∣∣ s, patom
〉
. (4.35)

Since the wave functions are output from the calculations one can determine other values of interest.

For EDM enhancement calculations it is often useful to calculate hyperfine constants since they also

depend heavily on the wave function near the nucleus of the heavy atom and can be compared to

experimental values.

4.5 Enhancement in PbO

In this section we review the calculations of the EDM enhancement factor in the a(1) state of PbO.

Discussion of the semi-empirical method of DeMille et al. [91] necessitates that we first examine the

electronic structure of PbO.

4.5.1 Electronic structure of PbO

To determine the electronic structure of a molecule there are two methods that are nearly diametri-

cally opposite to each other in philosophy. The first method starts with the separated states of the

constituent atoms and considers what molecular states can be formed as the atoms are moved closer

to each other. This method works well for determining the molecular structure at large internuclear

distances, i.e. near dissociation. The second method is similar in spirit to the building up principle

used in atomic structure. Molecular orbitals are defined and valence electrons are added one by

one to determine the electronic configuration. This method typically works for the electronic states
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at equilibrium.

Separated atoms

Lead has an electron configuration of (6s)2(6p)2. The two p electrons give a total spin S = 0, 1, and

a total angular momentum L = 0, 1, 2 leading to the possible atomic terms 3D,1 D,3 P,1 P,3 S,1 S. Only

1D,3 P, and 1S are antisymmetric in electron exchange.

To find the ground state we follow Hund’s rules[92]. The term with the highest S is lowest in

energy. Of these terms the one with highest L is lowest. Both rules minimize the overlap of the

electrons, lowering the electrostatic repulsion energy. Finally, for shells less than half full the term

with lowest J = |L − S| is the ground state. For shells more than half full the term with highest

J = L + S is lowest in energy. This rule is due to the spin-orbit interaction. More than half-filled

shells can be regarded as shells with holes which have an opposite spin-orbit interaction.

From Hund’s rules we conclude the ground term of Pb is 3P0 followed by 3P1 and 3P2.5 Similarly

for oxygen, with four p electrons or two p holes, we conclude the lowest terms are 3P2 followed by

3P1 and 3P0, since multiplets are inverted for more than half-filled shells. The parity of all of these

terms is even since we have an even number of electrons with l = 1.

When the two atoms are combined an electric field forms between the two nuclei. The projection

of the orbital angular momentum of each atom is then quantized along the internuclear axis. The

total projection of the orbital angular momentum, Λ, from the two even P states can be 0, 1, or 2

leading to two Σ+(2), one Σ−, two Π, and one ∆ molecular states (see Table 26 in Herzberg [67]). For

each of these states we can have S = 0, 1, or 2, although the S = 2 states are likely repulsive.

For large internuclear distances, or strong coupling between L and S, it is more appropriate to

quantize the total angular momentum of each atom along the internuclear axis. For lead ground

state, 3P2, and oxygen ground state, 3P0, we have J=2 and J=0 which leads to possible molecular

states with Ω = 2, 1, 0+. The other terms in the oxygen multiplet lie only a couple hundred cm−1

higher (as opposed to the splitting of nearly 8000 cm−1 between 3P0 and 3P1 of lead). The 3P1 of

oxygen combined with the lead ground state result in possible states of Ω = 1, 0− while the oxygen

3P0 state leads to Ω = 0+.
5While this is the correct ordering of the excited states, Hund’s rules generally work well only for the ground state
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Molecular orbitals

A nearly opposite approach is to build up the electron configuration using molecular orbitals. For

a two center system one can define cylindrically symmetric one electron wave functions. These

orbitals are designated by n and l as well as the quantum number λ, the magnitude of the projection

of l on the internuclear axis. For example an orbital designated 2sσ has n = 2, l = 0, and λ = 0.

For small internuclear distances these quantum numbers are analogous to those of an atom in an

electric field with λ = |ml|. The molecular shells fill similarly to atomic shells but with two electrons

in each σ shell, and four in each π, δ, . . . shell; two for each sign of ml.

In limit of large internuclear distance for two like nuclei each orbital can be either symmetric

or antisymmetric (labeled g or u, respectively) under a reflection through the origin. For example,

if we approximate the lowest molecular orbitals for molecular hydrogen as superposition of the

atomic hydrogen orbitals we have σg,u1s = σ1sA ± σ1sB. It is clear that for the σu orbital, the wave

function largely cancels between the two nuclei but for the σg orbital, the electron density is highest

between the nuclei leading to a stronger bond and lower energy. While the even-odd symmetry is

not strictly true in the case of unequal nuclei, there are analogous forms of the orbitals which are

called “bonding” and “anti-bonding” orbitals.

For p electrons the lowest energy orbital is a σ bonding orbital. Next comes from the π bonding

orbitals, one for each sign of |ml|. The splitting between the σ and π orbitals is essentially the Stark

shift from the internuclear electric field of the |ml| = 1 level relative to the ml = 0 level. Next come

the π anti-bonding orbitals, denoted by π∗, and finally the σ∗ anti-bonding orbital. Their higher

energies are due to the asymmetric wave functions which in the limit of small internuclear distance

corresponds to an orbital with higher principal quantum number, n.

In PbO we have six valence p electrons. Filling from the bottom this gives a σ2π4 configuration

for the ground state. Similar to the method of combining separate atoms, to determine the possible

molecular terms we can combine the molecular orbital quantum numbers to determine possible

terms. Closed shells such as σ2 and π4 give 1Σ+ terms just as in atoms. Thus we conclude the

ground state of PbO to be 1Σ+. The first excited states come from the raising of one of the π electrons

to a π∗ orbital (see Fig. 4.2). From Table 32 in Herzberg [67] three equivalent π electrons and one

nonequivalent π electron give the terms 1Σ+,1 Σ−,1 ∆,3 Σ+,3 Σ−,3 ∆. From Hund’s rules we expect the

3Σ states to be lowest in energy, followed by the 3∆, and then the singlets. We can also have excited
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Table 4.2: PbO configurations and term values

Configuration (S,Λ) term (ω,ω) terms

σ2π4 1Σ+ 0+

σ2π3π∗ 3Σ+ 0−, 1
3Σ− 0+, 1
3∆ 1, 2, 3

1Σ+ 0+

1Σ− 0−
1∆ 2

σπ4π∗ 3Π 0+, 0−, 1, 2
1Π 1

states with the configuration σπ4π∗ which lead to the terms 1Π and 3Π.

σ

σ*

π+1π‐1

π‐1
* π+1

*

σ

σ*

π+1π‐1

π‐1
* π+1

*

σ

σ*

π+1π‐1

π‐1
* π+1

*

σ

σ*

π+1π‐1

π‐1
* π+1

*

σ2

 

π4

X 1Σ+

σ2

 

π3

 

π*

a(1) 3Σ+

σ2

 

π3

 

π*

b? 3Δ

σ π4

 

π*

A(1) 3Π

Figure 4.2: Molecular orbital diagrams of a few states of PbO. The ground state, X1Σ+, of PbO fills
the σ and π orbitals. Exciting one π electron to a π∗ orbital gives Σ and ∆ states such as a(1)3Σ+ and
b(1)3∆. Exciting a σ electron to a π∗ orbital gives Π states such as A(1)3Π.

For large spin-orbit coupling (Hund’s case c) S and Λ are no longer good quantum numbers.

In this case we use (ω,ω) coupling which is similar to (J, J) coupling in atoms. Ω is the only good

quantum number. Table 4.2 all the possible terms in the (ω,ω) coupling scheme along with the

corresponding (S,Λ) term. Finally in Table 4.3 we show all the observed states, their assigned

terms, and estimates of the mixing of the (S,Λ) based on a theoretical relativistic configuration

interaction calculation in Balasubramanian and Pitzer [93].

The ground is dominantly 1Σ+, as expected, followed by triplet states. Many of the states have

not been observed presumably due to weak coupling to the ground state because of selection rules.

Σ+
− Σ− transitions are forbidden (or 0+

− 0− in Hund’s case c). For Hund’s case a only transitions

with ∆S = 0,∆Σ = 0, and ∆Λ = 0,±1, are allowed. For both Hund’s case a and c transitions must
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Table 4.3: PbO states

Label (ω,ω) term (S,Λ) terms Configuration Energy (cm−1)

X 0+ 1Σ+(84%),3Π0(0.8%),3Σ−0 (3.0%) σ2π4 0
a 1 3Σ+

1 (75%),3Σ−1 (25%),3∆1(< 1%) σ2π3π∗ 16023
b? 0− 3Σ+

0 (74%),1Σ−(20%) σ2π3π∗ 16335?
? 2 3∆2 σ2π3π∗

? 1 3∆1 σ2π3π∗

? 2 1∆2 σ2π3π∗

? 0− 3Π0(90%),3Σ+
0 (25%) σπ4π∗

A 0+ 3Π0(mostly),1Σ+(small) σπ4π∗ 19862
B 1 3Π1(mostly),1Π(small),3Σ−1 σπ4π∗ 22282
C 0+ 3Σ−0 (mostly),1Σ+(small) σ2π3π∗ 23795
C’ 1 3Σ−1 σ2π3π∗ 24942
D 1 1Π σπ4π∗ 30060
E 0+ 1Σ+ σ2π3π∗ 34443

have ∆Ω = 0,±1. Strictly speaking only the D(1) and E(1) states have allowed transitions to the

ground state. Most of the other observed states are forbidden while the unobserved states are

generally doubly forbidden or more.

4.5.2 Semi-empirical calculation

In this section we review the method of Kozlov and DeMille [75] for estimating the EDM enhance-

ment factor in the a(1) state of PbO. The goal is to fill in some of the calculational steps not made

explicit in the paper.

The basic idea is to express the molecular orbitals as linear combinations of atomic orbitals

(LCAO). The atomic orbitals are first constructed using the Hartree-Fock method on Pb+, which

best represents the lead atom in PbO. By evaluating matrix elements of these molecular orbitals for

the spin-orbit splitting between molecular states, hyperfine constants, and the magnetic G factor

one can constrain the coefficients of the linear combinations and use these constraints to place limits

on the EDM matrix element.

A molecular orbital, |λω〉, in the case of large spin-orbit coupling is specified only by the quantum

numbers λ = |L · n̂| andω = |J · n̂|. To expand a molecular orbital in terms of atomic orbitals we need

to make sure that the quantum numbers match. For example, the orbital
∣∣∣σ±1/2

〉
can be expanded

only in terms of atomic orbitals with mL = 0 and mJ = ±1/2. For Pb this means we can use 6s1/2,m j=±1/2
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and some combination of the 6p1/2,m j=±1/2 and 6p3/2,m j=±1/2 orbitals. For the 6p orbitals expressed in

the L,S basis the only term that can contribute is
∣∣∣L = 1,ml = 0,S = 1

2 ,mS = ± 1
2

〉
. Following similar

reasoning for the
∣∣∣π±1/2

〉
orbital and calculating the Clebsch-Gordan coefficients gives

∣∣∣L = 1,ml = 0,S = 1
2 ,mS = ± 1

2

〉
= ∓

√
1
3

∣∣∣J = 1
2 ,m j = ± 1

2

〉
+

√
2
3

∣∣∣J = 3
2 ,m j = ± 1

2

〉
, (4.36)∣∣∣L = 1,ml = 0,S = 1

2 ,mS = ± 1
2

〉
= ±

√
2
3

∣∣∣J = 1
2 ,m j = ± 1

2

〉
+

√
1
3

∣∣∣J = 3
2 ,m j = ± 1

2

〉
. (4.37)

(4.38)

With arbitrary constants the MO LCAO expansion is then

∣∣∣σ±1/2
〉

= Ss

∣∣∣6s1/2,±1/2
〉

+ Sp

∓
√

1
3

∣∣∣6p1/2,±1/2
〉

+

√
2
3

∣∣∣6p3/2,±1/2
〉 , (4.39)

∣∣∣πi,±1/2
〉

= Pi

±
√

2
3

∣∣∣6p1/2,±1/2
〉

+

√
1
3

∣∣∣6p3/2,±1/2
〉 , (4.40)∣∣∣πi,±3/2

〉
= Pi

∣∣∣6p3/2,±3/2
〉
. (4.41)

For the |πi〉 orbitals i = 1 refers to ground state orbital while i = 2 is the excited orbital we previously

denoted as π∗. Note the norm of the molecular orbital wave function needs only to be less than or

equal to one, allowing the possibility that oxygen orbitals also contribute.

The next step is express the state configurations in terms of the molecular orbitals. To simplify

calculations the ground state configuration, σ2π4
1, is defined as the vacuum state. Specifying excited

states is done by denoting a hole orbital followed by an excited orbital,

a(1)[3Σ+], b(0−)[3Σ+],C(0+)[3Σ−],C′(1)[3Σ−],E(0+)[1Σ+] ∈ σ2π2
1π2 ⇒ |π1, π2〉 (4.42)

A(0+)[3Π],B(1)[3Π],D(1)[1Π] ∈ σπ4
1π2 ⇒ |σ, π2〉 (4.43)

One might be concerned that some states will be missed by ignoring the other two π orbitals. A

quick check shows that, for example, two non-identical π orbitals form the same states as three

identical and one non-identical π orbital.

For the configuration expansions the key once again is to keep track of quantum numbers and

symmetries. In particular, there is some subtlety with the Σ± states. The ± here refers only to the

parity of the angular part of the wave function. For Ω = 1 there are still two nearly degenerate levels
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of opposite parity for each rotational line. The Ω = 0 parity states, however, are split in energy (this

is also true of the 3Π0± states as well). To get the signs correct we use the parity relations (see section

6.9.3-4 of [71]),

P
∣∣∣Λ = Σ±

〉
= ±

∣∣∣Λ = Σ±
〉

(4.44a)

P |L(l),Λ(λ)〉 = (−1)Λ(λ)
|L(l),−Λ(λ)〉 (4.44b)

P |S(s),Σ(σ)〉 = (−1)S(s)−Σ(σ)
|S(s),−Σ(σ)〉 . (4.44c)

For example, the Σ± states have Λ = 0 so they must be formed from some linear combination of

two π orbitals with λ1 = −λ2. One can check that the symmetric combination goes with Σ+,

P
∣∣∣Σ±〉 = P

[
1
√

2

{∣∣∣π1,λ=+1, π2,λ=−1
〉
±

∣∣∣π1,λ=−1, π2,λ=+1
〉}]

=
1
√

2

{
(−1)1−1

∣∣∣π1,λ=−1, π2,λ=+1
〉
± (−1)−1+1

∣∣∣π1,λ=−1, π2,λ=+1
〉}

= ±
∣∣∣Σ±〉 . X

Now to find the expansion for a(1)[3Σ+], for example, we simply add the triplet spin function. For

the Ω = +1 component we must have Σ = +1 so

∣∣∣a(1)[3Σ+]
〉

=
1
√

2

{∣∣∣π1,λ=1, π2,λ=−1
〉

+
∣∣∣π1,λ=−1, π2,λ=+1

〉}
|↑↑〉 =

1
√

2

{∣∣∣π1,3/2π2,−1/2
〉

+
∣∣∣π1,−1/2π2,3/2

〉}
.

(4.45)

Note that this is not a parity eigenstate. Presumably since calculations in this paper only involved

differences in electronic energies this distinction was not important since the parity states are nearly

degenerate. For Ω = 0 we will have to be more careful since the parity states are quite different in

energy.

Let us go over one more example, the A(0+)[3Π] state. Acting on one possible component with

the parity operator gives

P
∣∣∣3Π0,Λ = +1,S = 1,Σ = −1

〉
= (−1)+1(−1)1−(−1)

∣∣∣3Π0,Λ = −1,S = 1,Σ = +1
〉

= −
∣∣∣3Π0,Λ = −1,S = 1,Σ = +1

〉
. (4.46)
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Table 4.4: PbO σ2π3π∗ state expansions

|ω1, ω2〉 =
∣∣∣π1,ω1π2,ω2

〉
State

∣∣∣ 3
2 ,

3
2

〉 ∣∣∣ 3
2 ,

1
2

〉 ∣∣∣ 1
2 ,

3
2

〉 ∣∣∣ 1
2 ,

1
2

〉 ∣∣∣ 3
2 ,−

1
2

〉 ∣∣∣− 1
2 ,

3
2

〉 ∣∣∣ 1
2 ,−

1
2

〉 ∣∣∣− 1
2 ,

1
2

〉 ∣∣∣ 3
2 ,−

3
2

〉 ∣∣∣− 3
2 ,

3
2

〉
3∆3 1
3∆2

1
√

2
1
√

2
1∆2

1
√

2
−

1
√

2
3∆1 1

a(1)[3Σ+] 1
√

2
1
√

2

C′(1)[3Σ−] 1
√

2
−

1
√

2

b(0−)[3Σ+] 1
2

1
2

1
2

1
2

C(0+)[3Σ−] 1
2 −

1
2

1
2 −

1
2

E(0+)[1Σ+] −
1
2

1
2

1
2 −

1
2

1Σ− −
1
2 −

1
2

1
2

1
2

Thus the positive parity state is given by

∣∣∣A(0+)[3Π]
〉

=
1
√

2
{|Λ = −1,Σ = +1〉 − |Λ = +1,Σ = −1〉}

=
1
√

2

{∣∣∣σ, π2,λ=−1
〉
|↑↑〉 −

∣∣∣σ, π2,λ=+1
〉
|↓↓〉

}
=

1
√

2

{∣∣∣σ1/2π2,−1/2
〉
−

∣∣∣σ−1/2π2,3/2
〉}
. (4.47)

Tables 4.4 and 4.5 summarize the expansions.

Armed with these expansions the next step is to constrain the coefficients using experimental

data. First, Kozlov and DeMille use the spin-orbit multiplet splitting between the A(0+)[3Π] and

B(1)[3Π] states. The coefficient for the spin-orbit operator is first determined from the splitting of

the 6p orbitals in the lead ion,

∆ES−O = ξ
{〈

6p3/2

∣∣∣ l · s ∣∣∣ 6p3/2
〉
−

〈
6p1/2

∣∣∣ l · s ∣∣∣ 6p1/2
〉}

= ξ
(

1
2 − (−1)

)
= 3

2ξ, (4.48)
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Table 4.5: PbO σπ4π∗ state expansions

|ω1, ω2〉 =
∣∣∣σω1π2,ω2

〉
State

∣∣∣ 1
2 ,

3
2

〉 ∣∣∣ 1
2 ,

1
2

〉 ∣∣∣− 1
2 ,

3
2

〉 ∣∣∣ 1
2 ,−

1
2

〉 ∣∣∣− 1
2 ,

1
2

〉
3Π2 1

B(1)[3Π] 1
√

2
1
√

2

D(1)[1Π] 1
√

2
−

1
√

2

A(0+)[3Π] 1
√

2
−

1
√

2
3Π0−

1
√

2
1
√

2

where we have used l · s = 1
2
[
j( j + 1) − l(l + 1) − s(s + 1)

]
. One can also verify that

〈
σ1/2

∣∣∣ l · s ∣∣∣ σ1/2
〉

= S2
p

{1
3
〈
6p1/2

∣∣∣ l · s ∣∣∣ 6p1/2
〉

+
2
3
〈
6p3/2

∣∣∣ l · s ∣∣∣ 6p3/2
〉}

= 0 (4.49)〈
πi,3/2

∣∣∣ l · s ∣∣∣πi,3/2
〉

= P2
i
〈
6p3/2

∣∣∣ l · s ∣∣∣ 6p3/2
〉

= 1
2 P2

i (4.50)〈
πi,1/2

∣∣∣ l · s ∣∣∣πi,1/2
〉

= P2
i

{2
3
〈
6p1/2

∣∣∣ l · s ∣∣∣ 6p1/2
〉

+
1
3
〈
6p3/2

∣∣∣ l · s ∣∣∣ 6p3/2
〉}

= − 1
2 P2

i (4.51)

Returning to the spin-orbit splitting between the A and B states we have,

∆EB−A = ξ
{
〈B(1) | l · s |B(1)〉 −

〈
A(0+)

∣∣∣ l · s ∣∣∣ A(0+)
〉}

= ξ
{〈
π2,3/2

∣∣∣ l · s ∣∣∣π2,3/2
〉
−

〈
π2,3/2

∣∣∣ l · s ∣∣∣π2,3/2
〉}

=
ξP2

2

2
. (4.52)

Here we used the expansions in Table 4.5, and the fact that the σ orbitals do not contribute to the

spin-orbit splitting (see Eq. (4.49)). Using the experimental values gives

P2
2 =

2 × 2420 cm−1

9450 cm−1 = 0.51 (4.53)

The next step is to take into account spin-orbit mixing within the configuration. One can show that
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the positive eigenvector of a mixing Hamiltonian,

H =

∆/2 A

A −∆/2

 , (4.54)

can be expressed as

|1′〉 = cosα |1〉 + sinα |2〉 , (4.55)

where |1〉 and |2〉 are the original basis states and the mixing angle α ≈ A
∆ for A� ∆/2 (see Appendix

A). A similar calculation to Eq. (4.52) gives the mixing angle between the a(1) and C′(1) states,

α =
〈C′(1) |HSO | a(1)〉

∆EaC′
= ξ

P2
1 + P2

2

2∆EaC′
. (4.56)

By assuming P1 << P2 one finds α ≈ 0.3. Since 1(2) refers to the ground(excited) orbital this assumes

the ground state p electrons tend to be on the oxygen atom while the excited p electron moves to

the lead atom. The valence bond picture suggests that the lead atom does give up its p electrons to

the oxygen atom so this is not unreasonable. In the
∣∣∣π1,3/2π2,−1/2

〉
,
∣∣∣π1,−1/2π2,3/2

〉
basis the “mixing

angle” for the a(1) state was already π/4. Thus the new expansion, accounting for mixing with

C′(1), is

|a(1)〉 = cos (π4 − α)
∣∣∣π1,3/2π2,−1/2

〉
+ sin (π4 − α)

∣∣∣π1,−1/2π2,3/2
〉
. (4.57)

Next Kozlov and DeMille take into account mixing with other configurations. These other config-

urations mix the π orbitals with the σ orbital. For example, the a(1) state has a π1 hole orbital and

π2 electron orbital. The B(1) and D(1) states instead have σ hole orbitals and π2 electron orbitals.

Mixing with these states thus causes the π1 orbital to mix with the σ orbital. Mixing with higher

energy configurations could similarly cause mixing between π2 and σ orbitals. To account for this

mixing angles for the orbitals are introduced and the a(1) is expressed in terms of these new mixed

orbitals,

∣∣∣π̃i,1/2
〉

= ci

∣∣∣πi,1/2
〉

+ si

∣∣∣σ1/2
〉

|a(1)〉 = cα
∣∣∣π1,3/2π̃2,−1/2

〉
+ sα

∣∣∣π̃1,−1/2π2,3/2
〉

(4.58)

Note that this mixing is the key to EDM enhancement. As we saw above, enhancement relies on
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mixing of the atomic s and p orbitals. The σ orbital introduced in this mixing is the only source of

atomic s orbital in the a(1) wave function.

With the expansion of the a(1) state complete several experimental values can constrain the

coefficients. The mixing with the B(1) and D(1) states constrains s1 = 2.8s2
αP1Sp in a calculation

similar to Eq. (4.52). The value of the magnetic G tensor parallel to the internuclear axis, G‖ =

L0 + 2S0, is straightforward to calculate for the a(1) state and comparison with the experimental

value provides the constraint, s2
αs2

1 + c2
αs2

2 = 0.16. Finally the hyperfine constant can be calculated

with the aid of some radial integrals and compared to experiment.

With the constraints in place the expectation value of the EDM enhancement operator, Wd = 2σ·E

is calculated. The result in Kozlov and DeMille is

Wd = −c2
αWπ̃2

d − s2
αWπ̃1

d

= const. × Ss

(√
2c2
αc2s2P2 − c2

αs2
2Sp +

√

2s2
αc1s1P1 − s2

αs2
1Sp

)
(4.59)

The constraints make the first term dominate. An examination of the coefficients show that the first

term comes from the matrix element between the p orbital in the π−1/2 orbital and the s orbital in the

σ orbital, all coming from the mixed π̃2 orbital. For this to give large enhancement we would ideally

want a large contribution, Ss, from the 6s orbital to the σ orbital and strong mixing (s2, c2) between

the a(1) state and unobserved states in the σπ3
1π

2
2 configurations. The experimental constraints on

the coefficients give a final result of Wd ≥ 12 × 1024 Hz e−1 cm−1.

4.5.3 Ab initio calculations

Meyer et al. [89] perform the MRSCF and MRCI calculations described in Section 4.4 for many

molecules of interest for EDM experiments including PbO. A more recent version of their method

[94] gave results within 25% of the large scale calculations performed for individual molecules.

Several other ab initio calculations have been performed for PbO only. Isaev et al. [88] perform a

relativistic coupled cluster calculation to determine the EDM enhancement factor and hyperfine

constants. The coupled cluster method is similar in concept to the configuration interaction method.

Both start with a reference configuration and add excitations. The coupled cluster method, however,

takes into account n-electron excitations to all orders, where n is typically 2 to 4. In addition, the

method for generating the excitations allows an iterative rather than variational solution. Petrov
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Table 4.6: Effective fields in PbO a(1) state

Reference Ee f f (GV/cm)

Kozlov and DeMille [75] ≥ 25
Isaev et al. [88] 6.4 − 13
Petrov et al. [87] 11 − 16
Meyer and Bohn [94] 11.5

et al. [87] improve upon this work by using a relativistic configuration interaction calculation.

Table 4.6 summarizes the enhancement calculations for the a(1) state of PbO.

Examination of the later ab initio calculations suggest the enhancement mechanism is a little

more complicated than the semi-empirical model. Configuration mixing is needed to properly take

electron correlations into account. When this is done, the contribution from the lead 6s state to the σ

orbital is actually small. Much of the contribution comes from mixing with the configuration σπ4σ∗.

These differences help to explain the discrepancy between the two methods (see Table 4.6).



Chapter 5

Apparatus

The high sensitivity of the PbO experiment comes from two factors which have been never combined

in previous EDM experiments: the large enhancement from the internal electric field of a heavy

diatomic molecule and the high counting rate of a vapor cell experiment. These factors were never

combined for good reason: an EDM measurement requires unpaired electron spins. Molecules

with unpaired spins, called free radicals, are extremely chemically reactive, making the use of

vapor cells impossible. In the PbO experiment, the electron spins are only briefly unpaired for the

EDM measurement by exciting the molecules to a metastable excited state. At all other times the

spins are paired making the molecules chemically stable.

Much of the efforts for this experiment focus on the challenges of fabricating and maintaining

a high temperature molecular vapor cell and the hardware required to prepare and detect the

molecules in the excited metastable state used for the EDM measurement. In addition, as in

most EDM experiments, extreme control over magnetic fields in the apparatus is needed. The

combination of these unique needs means that commercial equipment is usually inadequate. Nearly

every part of the apparatus was designed by grad students and postdocs on the experiment.

This chapter will start with a brief overview of the experimental apparatus and then focus on

improvements or attempted improvements made during the course of this dissertation. Greater

detail on many other parts of the apparatus are in the theses of Sarah Bickman [81] and Yong

Jiang [52]. It is only because of their efforts (and those of previous students and postdocs) that the

experiment has reached the stage it is at today.

67



CHAPTER 5. APPARATUS 68

3.1 Development of the Vapor Cell

As our PbO EDM experiment must be carried out in a vapor cell, the construction of the

cell is crucial to meet the experimental requirement to provide a clean and robust structural

framework for holding a high density of PbO vapor.

Stem

  YAG Window
Guard Ring

Electrode

Cell Body BeO Spacer Plunger Hole

Electrode

Guard Ring

Figure 3.1: Vapor Cell and its Cut View. The vapor cell consists of an hollow alumina
frame with top and bottom end caps supporting flat gold foil electrodes, plus surrounding
guard ring electrodes, and large flat sapphire windows on all 4 sides.

The cell body is an alumina block, 3.5” × ”3.5” × 2.5”, with holes bored through the

centers of each face to form a frame structure. The cell is made large enough to reduce the

rate of wall quenching of the EDM state, ensuring that the coherence time is not limited

by collisions with the wall. Reentrant gold electrodes and guard rings are inserted through

the vertical holes with 3” diameter in the top and bottom of the cell. The reentrant design

of the electrodes improves the aspect ratio of the electric field region to minimize the fringe
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Figure 5.1: Vapor cell. The vapor cell is a high purity alumina frame with gold foil electrodes and
guard rings on the top and bottom. YAG windows are sealed to the sides with gold foil. The
electrodes and guard rings are electrically isolated with beryllium oxide and sapphire spacers.

5.1 Overview of apparatus

The central piece of the experimental apparatus is a high temperature vapor cell. Design of this

vapor cell and the oven used to heat it was technically challenging. To achieve significant PbO

vapor pressure, temperatures over 700 ◦C are needed. Even though PbO is not as reactive as a free

radical, it still destroys most materials at these temperatures. It took considerable effort, described

in several prior theses [52, 81, 95], to find a suitable vapor cell and heating oven design.

The PbO vapor cell is a hollow rectangular alumina block, 3.5” wide by 2.5” high. Four 2”

diameter, 2.5 mm thick, yttrium aluminum garnet (YAG) optical windows are sealed1 to the sides

of the cell with gold foil (see Fig. 5.1). A stack of circular alumina pieces form the top and bottom

of the cell. The innermost pieces, 2” diameter circles covered in bonded gold foil, are the main

electrodes. Outside the electrodes are quarter inch thick annular guard rings. Sapphire and/or

beryllium oxide spacers electrically isolate the main electrodes from the guard rings and the cell

itself. The top and bottom electrode/guard ring pairs project into the cell and are spaced 1.5” apart

1The pieces to be bonded together are held under pressure with the gold foil between them and heated to just below the
melting point of gold. See [81] for details.
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for maximum uniformity of the electric field. The guard rings are held at 1.8 times the electrode

voltage to “push” in the electric fringe fields and create an optimal region of uniformity. Gold foil

serves as both the electrical connection to the outside of the cell and a seal between the electrode

stack and the spacers. Gold wires are either spot welded2or welded with a jeweler’s torch to the

tabs on the electrode foils.

A stem tube, connected to a small hole in the center of the bottom electrode, is kept cooler than

the cell body and, in theory, serves as a reservoir for the PbO. A similar hole in the top of the cell

is sealed with a movable polished alumina rod. A home-built non-magnetic linear motion vacuum

feedthrough [52] allows this “plunger” rod to be moved from outside the vacuum chamber to open

the seal and evacuate the vapor cell at low temperatures.

The cell is heated radiatively by a complex oven structure comprised of resistively heated tan-

talum foils secured in grooved quartz plates that attach to a quartz frame. The foils are driven with

high current audio frequency waveforms generated by a rack of high power stereo amplifiers. The

foils are laser cut in a zigzag pattern and connected in pairs with opposing current directions to

reduce inductance, which allows us to switch the heating on or off in a fraction of a millisecond.

Because of sensitivity to magnetic fields, no heater currents can be present during the EDM mea-

surement. During switching, the amplitude of the heater waveforms is smoothly ramped over a few

hundred microseconds to suppress induced eddy currents in metal parts of the oven and vacuum

system. There are independent heating elements, comprised of two foils connected in series for

each cell side, each cell window, the plunger, and the stem (see Fig. 5.2).

The stem, plunger, and side temperatures are monitored with thermocouples specifically de-

signed for this experiment. Most commercial thermocouples that operate at 700 ◦C contain magnetic

materials or are extremely brittle under the conditions of our experiment. We use thermocouples

made from a gold-palladium alloy wire (60% Au, 40% Pd) welded to a pure gold wire with a jeweler’s

torch. The temperature response was roughly calibrated in vacuum against a set of standard type K

thermocouples (see Fig. 5.3). The Au/Au-Pd thermocouples are connected to custom non-magnetic

vacuum feedthroughs. To prevent unwanted thermoelectric voltages, the feedthroughs have gold

and gold/palladium alloy wires which pass through several inches of epoxy. The feedthrough is also

designed to provide strain relief, as the thermocouple wires are prone to breaking after mechanical

bending.

2For a good bond a #11 welding head should be used with a power setting > 800 and a force setting of 8.0.
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Figure 3.10: Picture of the main body of the oven. A tantalum heat shield is attached directly
to the outside of the window, plunger, stem, top, and bottom heaters. The tantalum foils are
pressed between the opaque quartz plates that are grooved to support the foils. Tabs from these
foils extend out from the quartz to allow for connections to the terminal blocks.
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Figure 5.2: Oven. Tantalum heater foils are sandwiched between pieces of quartz, which are
attached to a quartz frame surrounding the vapor cell with alumina nuts and screws. Only the
leads of the foils are visible. The tantalum foil wrapped around the quartz pieces was a previous
attempt at heat shielding. On the bottom, three layers of quartz heat shielding are visible with
tantalum foil wrapped on the innermost layer and copper foil on the outer layers. This has since
been replaced with insulating ceramic fiber board. The insulating ceramic beads on the twisted
wire pairs have also been replaced with woven ceramic sleeving held in place with tantalum or
copper crimp-on connectors.
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Figure 5.3: Au/AuPd thermocouple calibration. Measured voltages across several thermocouple
junctions of a pure gold wire and a 60% gold / 40% palladium wire versus temperature as measured
by standard K type thermocouples in vacuum. The red line is a third order polynomial fit.

A 48-channel low speed analog-to-digital board from National Instruments monitors the voltage

and current waveforms for each heating element, the thermocouple voltages, electrode currents,

and ambient magnetic field as measured by a 3-axis flux-gate magnetometer. Labview software

logs the data and displays the time history. Monitoring the heater foil resistances helps us to

both identify and predict failures. If systematic effects are identified in the future, this system will

facilitate looking for correlations with the housekeeping data.

The oven system is insulated by 1 3/4” thick layer of ceramic fiber boards held in place by a quartz

frame. All electrical connections inside the oven system go to ceramic terminal blocks mounted on

the same frame. This entire system sits inside an aluminum vacuum chamber. Connections from

the terminal blocks are made to non-magnetic coaxial feedthroughs designed for this experiment

(see [52]). The entire vapor cell/oven system is assembled and disassembled outside the vacuum

chamber to minimize the risk of breaking electrical connections inside. Once the system has been

placed in the vacuum chamber only connections between the terminal blocks, which are easily

accessible, and the feedthroughs have to be made (see Fig. 5.4).

The vacuum chamber has copper tubing brazed to it which functions as an open-loop wa-

ter cooling system. There are also two 300-turn circular magnetic coils (10.5” ID) mounted in a
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Figure 5.4: Insulation and terminal blocks. The oven assembly is now insulated by 1 3/4” of ceramic
fiber board (Cotronics 360). Ceramic fiber blankets (Cotronics 370) are used to insulate all other
exposed parts. The ceramic terminal blocks used to make electrical connections are visible at the
top of the picture. The connections are made with twisted wire pairs which are insulated by ceramic
fiber sleeving and have crimp-on tantalum connectors on their ends.
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Figure 5.5: The vacuum chamber. Brazed copper tubing provides water cooling for the chamber
itself and the light pipe feedthroughs. Two 300-turn magnetic coils mounted in the Helmholtz
configuration produce a uniform magnetic field in the vertical direction. Currents run through
various combinations of the “cosine” distributed threaded rods produce independently controlled
uniform and gradient fields along the two horizontal axes.

Helmholtz configuration to provide a uniform magnetic field in the vertical direction, which we

call the laboratory z-axis. A few independent turns of wire are attached to each coil mount for

generating a gradient in the z direction, which might be useful during systematic checks. A cage of

threaded brass rods in a “cosine” distribution are also mounted to the vacuum chamber. Running

current through the rods produces independently controlled uniform and gradient magnetic fields

in the x and y directions (see Fig. 5.5). Connections between the rods are made with magnet wire

and routed such that supply currents are accompanied by return currents in the opposite direction

to eliminate stray magnetic fields. Connections between the current supplies and magnetic coils

are made with twisted wire pairs for the same reason.

The vacuum chamber sits inside up to four layers of cylindrical magnetic shielding as shown

in Fig. 5.6. An external turbo pump, attached through a pipe entering the bottom of the shields,
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Figure 5.6: Magnetic shields and vacuum chamber. The vacuum chamber sits in up to four layers
of roughly cylindrical mu-metal magnetic shields supported by an aluminum 80/20 structure. The
aluminum vacuum system exits through the bottom of the shields, connecting to an external turbo
pump. Two 60-turn coils wrapped around each shield layer for demagnetization.

evacuates the chamber to ≈ 10−6 Torr. Electrical connections, either coaxial or twisted pair, pass

through holes in the top of the shields. Each layer of magnetic shields has two 60 turn coils wrapped

around it for demagnetization (see Section 5.4).

To excite the molecules a pulsed laser system is used which sits on an optical table outside of

the magnetic shields. A pulsed Nd:YAG laser (Spectra GCR 190-100), with 100 Hz repetition rate,

pumps a Fluorescein 548 dye laser (Lambda Scanmate 2E) which produces 15-25 mJ, 7 ns pulses with

a wavelength of 548 nm. This laser drives the R0 transition, |X, ν = 0, J = 0〉 → |a, ν′ = 5, J′ = 1〉.3

The laser propagation direction is defined to be along the laboratory ŷ axis as shown in Fig. 5.7. The

linear polarization of the laser pulse is set in the x̂− ẑ plane by a combination of a high-power half-

wave plate and Glan-Laser calcite polarizer. A telescope increases the diameter of the collimated
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laser beam to 1.5”.

A home-built microwave system delivering up to 4 W of power at 28.2 GHz drives transitions

between the various sublevels of the |a, J = 1〉 and |a, J = 2〉 rotational levels.

Four 2” diameter quartz light pipes serve as vacuum feedthroughs for the laser light, mi-

crowaves, and fluorescence. They pass from outside the vacuum chamber, through non-magnetic

brass compression feedthroughs, to inside the chamber and oven ending approximately 1/4” from

the cell windows. Two photomultiplier tubes (PMTs) with various colored glass filters, interference

filters, and polarizers are mounted on the light pipes in the ±x̂ directions. The high voltage on the

first dynode of the PMTs is gated to effectively turn them off during the high intensity laser pulses.

The fluorescence signal is then digitized 10µs after each laser pulse with a 14-bit, 2.5 MHz sampling

rate data acquisition board (NI-PCI-6132).4

A Labview program automates the tasks of recording the fluorescence and housekeeping data.

In addition it runs scripts which control the electrode voltages and microwave pulse parameters

used for state preparation. The data is recorded both locally and sent over the Internet via TCP/IP

to an analysis program. This program can fit the fluorescence data to a model function which

determines the quantum beat frequency in real-time, i.e. in less than 10 ms. It also has a variety of

user interfaces for averaging and displaying x-y plots or histograms of specified fit or housekeeping

parameters in real time.

The EDM experiment is run at the 100 Hz repetition rate of the pulsed Nd:Yag laser. The Q-

switch signal from the laser electronics triggers an eight channel pulse generator (BNC Model 565)

every 10 ms. Fig. 5.8 shows the timing sequence for a single “shot” of data. The output of the heater

waveform from an arbitrary waveform generator (Agilent 33120A) is triggered ≈ 500µs after the

trigger. The waveform is ≈ 9 ms long and has smooth on and off transitions. A delayed pulse, 9.99

ms after the laser, triggers a four channel pulse generator (BNC 505). Doing so allows us to send a

10µs gating pulse to the PMTs 3µs before the laser fires. Other channels trigger the data acquisition

system and various parts of the microwave system which will be discussed in Section 5.9.

3The ν = 0 vibrational level in the X state and the ν′ = 5 level in the a(1) state are assumed from this point on unless
otherwise specified.

4We have recently switched to the 14-bit, 100 MHz NI-PCI-6522.
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Figure 2.3: Schematic of PbO EDM Experiment Setup
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Figure 5.7: Schematic of the optical system. A pulsed Nd:YAG laser, with 100 Hz repetition rate,
pumps a Fluorescein dye laser which produces 15-25 mJ, 7 ns pulses at a wavelength of 548 nm. The
linear polarization of the laser pulse in the x̂− ẑ plane is set by a combination of a high-power half-
wave plate and Glan-Laser calcite polarizer. A telescope increases the diameter of the collimated
laser beam to 1.5”. Fluorescence is propagated to PMTs via quartz light pipes. Microwaves for
driving rotational transitions are coupled to the vapor cell with a solid Teflon guide attached to a
quartz light pipe. Helmholtz coils provide a uniform magnetic field inside the magnetic shields
surrounding the vacuum chamber.
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Figure 5.8: Experiment timing schematic. The Q switch trigger from the ND:Yag laser electronics
triggers an eight channel BNC 565 pulse generator. Blue pulses are generated by the BNC 565,
except for the PMT gates which are generated by the four channel BNC 505 pulse generator. Data
acquisition occurs between 10-400 µs. The heater waveform is smoothly ramped on afterwards and
then ramped off 0.5 ms before the next laser pulse. The control signals for the microwave system
are shown in more detail in Fig. 5.35.
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5.2 Electrical connections

In previous generations of the apparatus, one of the limiting factors to experimental run time was

the reliability of the electrical connections inside the vacuum chamber. All but the most simple

of these failures required removing the oven assembly from the vacuum chamber, a process that

generally took close to a full week.

All electrical connections must be made from non-magnetic materials, withstand temperatures

of over 700 ◦C, and withstand contaminants from our tantalum foil oven system. With over 30

connections for the 12 heating elements, 4 electrodes, and 4 or more thermocouples, reliability was

key. In the past, we used copper, gold, or tantalum wires, with ceramic beads for insulation. The

ceramic beads often shifted, leaving exposed wire that lead to electrical shorts. In addition, over

time the wires became extremely brittle. We explored the use of commercial ceramic coated wire as

an alternative, but found they all had nickel (i.e. magnetic) coatings.

We now use woven ceramics (Nextel XC) for insulation. Assembly is time consuming. For each

connection, several copper wires are threaded through a small ceramic sheath. Two of these bundles

are twisted to make a pair and then threaded through a larger ceramic sheath. Crimp-on tantalum

or copper connectors, described below, are used to hold the sheaths in place and reduce fraying.

The woven ceramics allow flexibility and seem to offer better protection of the wires. Electrical

shorts have been eliminated and over several years only one twisted pair has failed.

In the past, to make the electrical connection between the oven foils and wires, tantalum foil tabs

were spot-welded to the wires and held against the oven foils with ceramic screws. The other end of

the wire was connected to a ceramic terminal block attached to the oven assembly. The spot welds

were often the weak point where wires would break. To remedy this, we now use custom-designed

crimped connectors (see Fig. 5.9) made of tantalum, for the high temperature oven connections, or

copper outside of the oven. The connectors ease assembly and provide strain relief.

5.3 Leakage currents

5.3.1 In-cell leakage currents

Magnetic fields due to stray currents flowing between the electrodes in the vapor cell are a possible

source of systematic error. Since the resistance of insulators drops exponentially with temperature,
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Figure 5.9: Ceramic insulated twisted wire pairs. All connections to the heaters are made with
twisted wire pairs insulated with woven ceramic sleeving. A larger sleeving, seen above, covers
the wire pair. A copper or tantalum connector holds the sleeving in place, provides strain relief,
and makes the electrical connections more reliable.

isolation of the electrodes is important. Currently, the electrodes are insulated from the guard rings

by a beryllium oxide spacer, and the guard rings are insulated from the cell body by a sapphire

spacer (see Fig. 5.1).

Leakage currents on the electrodes, guard rings, and cell body are monitored using the five

channel floating ammeter circuit described in [81]. High isolation rotary switches have been added

to the circuit for selecting the gain of each channel. To determine leakage paths, voltages are applied

to each channel one at a time while the other four channels are grounded. The electrical connections

from the outside to the inside of the vacuum chamber are made through the center pin of coaxial

vacuum feedthroughs. To obtain accurate leakage current readings it is necessary to either apply the

same voltage to the coaxial shield of the channel under test or let the shield float. Leakage currents,

at the feedthroughs, of up to hundreds of microamps have been observed when the coaxial shield

is grounded.

A Labview program (“Leakage current mx.vi”) automatically ramps the applied voltage, records

the currents, and outputs a log file. The leakage currents are typically on the order of 10µA for

an applied voltage of 150 V at a vapor cell temperature of 700 C (see Fig. 5.10). Leakage paths are

usually only seen between an electrode and its guard ring. No currents from the electrodes and

guard rings to the cell body have been observed. However, there is usually a substantial difference

between the measured currents going into and out of the cell, suggesting there are unidentified

leakage paths to ground.
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Figure 3.8: Leakage currents are simultaneously measured in all 4 electrodes and guard rings
when voltage is applied to only the top guard ring. Since more current is flowing through the
lead to the top guard ring than the sum of the remaining three leads, it is inferred that the top
guard ring also has a leakage path to ground.

guard ring while all other electrodes and guard rings are grounded. The current in both guard

rings and both electrodes are monitored. Since the sum of all currents in the other two electrodes

and bottom guard ring is not equal to the current in the top guard ring, the additional current

must be travelling directly to ground. Unfortunately, there is no way to know whether or not

these leakage currents to ground are causing magnetic fields in the ẑ direction, so they must be

considered as dangerous as the leakage currents through the cell. Therefore, it will be necessary

to determine whether the path to ground is causing a magnetic field in the ẑ direction. This

can be done using the co-magnetometer created by the Ω doublet of the a(1) state.

Leakage currents through the cell body have been observed to be roughly independent of

which material (beryllium oxide or sapphire) is used for the insulating spacer between pieces

of the cell. Preliminary tests suggest that the bottom electrode may have the largest leakage

currents to ground. It would be unsurprising if the bottom electrode has the largest leakage

currents to ground since this electrode rests on the stem. The stem is electrically connected

to the quartz oven through a thermocouple in the stem (see figure 3.9). If necessary, isolating

this path with an additional sapphire tube may improve the leakage currents from the bottom

electrode.

In general, only high purity alumina such as 99.99% alumina has a sufficiently high resistance
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Figure 5.10: In-cell leakage currents. Voltages are applied to the electrodes, guard rings, and cell
body one at a time while currents are monitored on all five channels. Shown above is a test with the
voltage applied to the top guard ring at a vapor cell temperature of 700 C. For positive voltages the
leakage path appears to be to the top electrode, while for negative voltages the path is unknown.
Positive currents always refer to currents flowing towards the vapor cell.

The leakage currents are often non-linear in voltage and the shape of the V-I curve depends

strongly on the temperature of the vapor cell. One possible explanation for the non-linear currents

is thermal emission of electrons, known as thermionic currents, between an electrode and guard

ring. For positive top guard ring voltages, the voltage dependence of the current from the top

electrode to the top guard ring in Fig. 5.10 is consistent with thermionic emission (also this does not

explain the top guard ring currents for negative voltages). At low voltages one expects a I ∝ V3/2

relationship seen in vacuum diodes [96]. At larger voltages the current emitted per unit area is

given by the Richardson equation

J = AT2e−(W−∆W)/kT, (5.1)

where A = 4πmek2e/h3
≈ 1.2 × 10−6 A m−2 K−2, W is the surface work function, and ∆W =

√
e3E/4πε0

with E the applied electric field. The largest electric fields we typically apply between the electrode

and guard ring, E ≈ 500 V cm−1, give ∆W ≈ 30 meV which is negligible compared to the gold work

function of W = 4.0 − 4.9 eV at 1000 K. A work function of W = 4 eV and an electrode area of

≈ 1 × 10−3 m2 gives a current of 4 pA. However emission from surface contaminants or contact

potentials can reduce the work function. Lowering the work function to 2.5 eV increases the current
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Figure 5.11: Three electrode leakage current measurement. Placing the guard electrode at the same
voltage as the test electrode prevents surface currents from the test to counter electrode. Thus
measuring the test to counter electrode current determines the volume resistance. The surface
resistance is measured through the guard to counter electrode current. Bottom right: A setup to
test the theory that making the current path traverse surfaces parallel to the electric field should
reduce leakage currents.

to 200µA!5

If leakage currents do become a concern in the future, the thermionic emission hypothesis

could be tested by looking for leakage currents between two electrodes in a vacuum furnace.

If the electrodes are held by mounts which make no contact until outside the hot region of the

furnace, surface conduction could be ruled out. If thermionic emission is confirmed, rounding the

sharp edges of the cell electrodes could help to reduce locally large electric fields. Other possible

improvements are the use of an electrode material with a higher work function, such as platinum, or

electrochemical cleaning of the electrodes to remove contaminants. However, if the contamination

is due to PbO (e.g. a monolayer on the surface of the electrodes), neither the use of alternative

materials nor cleaning will help.

5.3.2 Benchtop leakage current tests

In an effort to understand the source of the vapor cell leakage currents, we measured the high

temperature resistivity of sapphire in a ceramic kiln. Fig. 5.11 shows the configuration of the

electrodes which were made with gold foil bonded to a 2.5” diameter, 1/4” thick sapphire window.

A three electrode configuration was needed to separate the effects of surface and volume currents.

5Will et al. [96] has an excellent discussion of high temperature leakage paths. They observed a surface work function of
2 eV using platinum electrodes which have a 6 eV work function. The lower work function was attributed to contaminant
oxides.
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Figure 5.12: Left: Surface resistance of a sapphire window measured in air at several applied
voltages. The surface resistivity is ≈ 7 times the resistance. Right: Volume resistance of the
sapphire window. The volume resistivity is ≈ 4 cm times the resistance.

A guard electrode surrounds the test electrode. By applying the same voltage to the guard and test

electrodes, surface currents can not flow from the test electrode to the counter electrode on the other

side of the window. Thus measuring the test to counter electrode current determines the volume

resistance. The surface resistance is measured through the guard to counter electrode current. To

avoid leakage paths due to poor insulation the electrode wires were threaded through alumina

tubes which were suspended by a mount at room temperature outside of the kiln. A digital volt

meter (DVM) was wired in series between the electrode under test and ground. The DVM (Fluke

75) voltage reading was divided by its internal resistance, 107 Ω, to obtain the current. The lowest

possible reading, ≈ 0.5 mV, corresponds to a resistance of 2 × 1012 Ω for an applied voltage of 100 V.

The measurements, shown in Fig. 5.12, show that surface currents dominate currents through

the bulk of the window. Note that these values of resistivity are orders of magnitude higher than

previous measurements in our lab that did not use a guard electrode. However they are still orders

of magnitude lower than the data from a careful study in the literature [96]. The difference may be

due to the unknown orientation of the crystal axis in our test window. To reduce surface currents

we also tried a more convoluted surface (see bottom right of Fig. 5.11), with paths parallel to the

electric field, but found this had no discernible effect.

The resistances measured in the test setup were orders of magnitude higher than those currently

measured in the vapor cell. This may be due to surface contamination from PbO. It is also very

likely that there are leakage paths outside the cell. We did attempt to reduce this possibility by
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insulating the electrode wires with beryllium oxide beads and passing them through a quartz tube

system (see Jiang [52]) which makes no contact with the apparatus until the tubes are outside of the

oven. However, this had little effect on the leakage currents.

5.4 Degaussing system

The magnetic shields are ferromagnetic and thus exhibit hysteresis under changing magnetic fields.

To demagnetize the shields we apply a magnetic field, alternating in direction, large enough to

saturate the shields and then slowly ramp down the field amplitude to zero. Because the field

magnitude required to reach saturation is the same in both directions this procedure should leave

the shields completely demagnetized.

To apply the magnetic field we drive 25 amps of alternating current (60 Hz) through each of two

60 turn loops of wire wrapped around the main portion of the shields (see Fig. 5.6). In addition 4

amps of current are driven through loops of 18, 20, and 24 turns wrapped around the endcaps of

the first, second, and third shields, respectively. A variac capable of producing 60 amps at 240 volts

(Variac Inc. M5011-2S) provides the current. A Labview program (“degaussmx.vi”) controls a relay

box that switches between the degaussing coils for each shield. After any magnetic field changes,

the shields are degaussed from the outermost shield to the innermost shield back to the outermost

shield. Note that the coils will melt if not given 5-10 minutes to cool between degaussings.

5.5 Polarization-sensitive detection

In theory, the quantum beat fluorescence is polarized along the x̂ axis, while background fluores-

cence is mostly unpolarized. Past attempts using dichroic polarizers outside the vacuum chamber

had shown little background rejection. It was assumed that the light pipes scrambled the polariza-

tion of the fluorescence. However, modeling showed that polarization scrambling should be small

for our fluorescence angular distribution. After eliminating several sources of birefringence in the

apparatus we are now able to use polarization-sensitive detection.
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Figure 5.13: Reflection of polarized light. Shown above is the case of external reflection off a
metal surface where there is no relative phase shift of the s and p polarization components. In the
polarization coordinate basis shown in the lower left, the ε̂p,⊥ component flips sign upon reflection
while the other two components are unchanged. For internal reflection there can be a phase change
between the s and p components dependent on the angle of incidence, θi.

5.5.1 Polarization in light pipes

Consider a light ray bouncing off a surface (see Fig. 5.13). From elementary optics [97, 98] there

can be a relative phase shift between the electric field component parallel to the plane of incidence,

called the p polarization, and the component perpendicular to the plane of incidence, called the s

polarization.6 If the polarization is either completely s or p, the relative phase shift has no physical

effect. Polarization scrambling occurs only when both components are present. For external

reflections off a metal surface the relative phase shift is zero and all polarizations “follow” the

reflected ray as expected. If we define a coordinate system (see Fig. 5.13) for the polarization with

ε̂s = k̂ × n̂, ε̂p,‖ = n̂, and ε̂p,⊥ = n̂ × (k̂ × n̂) then the relations between the incoming and outgoing

components for external reflection are

εs → εs, εp,‖ → εp,‖, εp,⊥ → −εp,⊥ (5.2)

For internal reflections above the critical angle the phase shift is 180 degrees. Below the critical

6s stands for the German word for perpendicular, senkrecht. This will probably not help you to remember which is which.
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Figure 5.14: Geometry for light pipe polarization calculation. A ray, parameterized by the angles θ
and φ starts on the light pipe axis with polarization in the x̂ − ẑ plane. The change in polarization
is calculated for a single bounce and the transmission through a polarizer oriented to reject the ŷ
polarization is calculated.

angle, i.e. total internal reflection, the phase shift varies with angle of incidence [98] as

tan δ/2 = cosθi

√
sin2θi − (1/n)2

sin2θi
. (5.3)

For arbitrary phase shift the relation between the incoming and outgoing polarization components

is then

εs → εs, εp,‖ → eiδεp,‖, εp,⊥ → −eiδεp,⊥ (5.4)

In this polarization coordinate basis the magnitudes of the polarization components are unchanged.

Therefore if we want to preserve the polarization in the laboratory coordinate system we should

align it with one of the polarization coordinate axes. However, only the axis pointing in the direction

of the normal, ε̂p,‖ = n̂, is fixed in the laboratory frame for arbitrary ray direction k̂. Thus only the

normal component of the polarization can be preserved for an arbitrary ray. Since two surfaces with

different normals are needed for a light pipe, a polarization preserving light pipe is impossible.

Given the above relations it is straightforward to calculate the polarization of an arbitrary ray

after total internal reflection in a light pipe. Fig. 5.14 shows the geometry for rays starting on the

light pipe axis, parameterized by the two angles θ and φ. To determine the degree of polarization

scrambling the initial polarization is set in the x̂ − ẑ plane, as if the rays had passed through a

polarizer on the face of the light pipe oriented to reject the ŷ polarization. We then calculate the



CHAPTER 5. APPARATUS 86

0 Π

16
Π

8
3 Π

16
Π

4

0

Π

2

Π

3 Π

2

2 Π

Θ

Φ

.874

1

T

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

Θ

T

Figure 5.15: Benchtop test of polarization after a light pipe. The color indicates the theoretical
transmission through parallel polarizers before and after a light pipe. Note the lowest color corre-
sponds to ≈ 87%. Rays start on the light pipe axis and are parameterized by the angle, θ, between
their propagation direction and the light pipe axis and the azimuthal angle, φ. Only one bounce is
calculated. The angular distribution in our experiment peaks around θ = π/9. A cut through the
worst azimuthal angle, φ = π/4, is plotted on right.

transmission through a polarizer on the exit face of the light pipe also oriented to reject the ŷ

polarization. Note the transmission is not the square of the component the polarizer passes, in this

case (ε̂ · x̂)2, rather it is one minus the square of the rejected component, 1 − (ε̂ · ŷ)2. Fig. 5.15 shows

the transmission as determined by Mathematica,

T = 1 −

∣∣∣∣∣∣∣∣∣
(
−1 + eiδ

)
cosθ cosφ sinφ√

cos2 θ + cos2 φ sin2 θ

∣∣∣∣∣∣∣∣∣
2

. (5.5)

Since the fluorescence angular distribution peaks at θ ≈ π/9 in our experiment this calculation

suggests the polarization should be well preserved. However these analytical results neglect

multiple bounces and skew rays. A ray tracing program by Amar Vutha predicts that, for our

angular distribution, the polarization will be 80 − 90% preserved even after a few bounces.

We confirmed these models by observing light from a diverging source passing through a light

pipe with crossed polarizers on either end. If a point source is used, a lens placed after the light

pipe will focus the rays from successive bounces into concentric ring patterns (see Fig. 5.16). The

rings clearly showed the four-fold pattern of polarization scrambling which increased with each
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Crossed polarizers

Figure 5.16: Polarization scrambling in a light pipe. Diverging light from a point source can be
imaged into a series of concentric rings which increase in size for each bounce in the light pipe. The
dashed lines show the virtual source on the left for a a few rays representative of a single bounce.
Extinction in the ring images show increasing polarization scrambling for each bounce at 45 degree
angles to the crossed polarizers’ orientations.

bounce.

5.5.2 Sources of birefringence

After a renewed investigation into sources of polarization scrambling in our apparatus, a few

changes were made.

First, the sapphire windows on the vapor cell were replaced with YAG windows. The sapphire

windows were cut along the c-axis of the crystal to eliminate birefringence. This was essential

to preserve the polarization of the collimated excitation laser. However, even c-cut sapphire is

birefringent for light at non-normal incidence. This scrambled the polarization of the fluorescence

light, foiling previous attempts at polarization-sensitive detection.

YAG is not birefringent regardless of the angle of incidence due to its cubic crystal structure. It is

also one of a few materials that can withstand PbO vapor. To reduce reflections of microwaves [99],

the 1.5 mm thickness of the new windows corresponds to roughly half the wavelength, in YAG, of

the microwaves used in the experiment, after taking into account the changing refractive index of

YAG with wavelength and temperature [100].
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Figure 5.17: Effect of wire grid polarizer. The unpolarized background fluorescence and blackbody
radiation are reduced by 50%. The beat amplitude change is consistent with the transmission of the
polarizer and loss from Fresnel reflections. Since the EDM uncertainty improves as the square root
of signal-to-noise (i.e. beat amplitude to background) the polarizer gives a modest improvement.
Even a perfect polarizer would only reduce the uncertainty to 1

√
2
≈ 70%. However, higher contrast

will improve the reliability of our fitting program and/or reduce the number of averages needed
before fitting.

Second, a small aluminum ring is attached with caulk (Elmer’s Stix-all, at Larry Hunter’s sug-

gestion) to the light pipes to keep them from being pushed into the vacuum chamber. Atmospheric

pressure pushes the light pipes with 44 lbs of force. In the past, o-rings in a compression mount

prevented the light pipes from slipping. Observing light through crossed polarizers on the ends of

a light pipe confirmed that the compression mounts cause stress-induced birefringence.

We also found that the plastic light pipes used outside of the vacuum chamber are extremely

birefringent. Hence the analyzing polarizer must precede them in the optical path. IR blocking

colored glass and the CaF2 windows, previously used to cool the colored glass, are not birefringent.
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5.5.3 Observations with wire grid polarizers

For polarization-sensitive detection of the fluorescence we use the relatively new technology of

visible wire-grid polarizers which have high transmission (> 90%) and large angular acceptance.

Polarizers typically used in laser optics accept a very small solid angle. Dichroic polarizers have

large angular acceptance but typically have transmissions below 50%.7 We use 2” circular wire-

grid polarizers from Moxtek (PPL05C) which have a typical transmission of 92.5% for p-polarized

light and 0.52% for s-polarized light. The polarizers are mounted after the heat blocking colored

glass filters on the air side of the detection light pipes. As shown in Fig. 5.17, the background

fluorescence and blackbody radiation are reduced 50% by the polarizer as expected for unpolarized

light. The beat amplitude change is consistent with the transmission of the filter after accounting for

Fresnel reflections. Since the EDM uncertainty improves as the square root of signal-to-noise (i.e.

beat amplitude to backgrounds) the polarizer gives only a modest improvement. Even a perfect

polarizer would only reduce the uncertainty to 1
√

2
≈ 70%. However, the higher contrast should

improve the reliability of our fitting program and/or reduce the number of averages needed before

fitting.

5.6 Oven and heat shielding

In the past, the tantalum foils of the vapor cell oven become brittle after a couple months of usage

and eventually broke. Replacing the foils required complete disassembly and reassembly of the

apparatus which took a few weeks of time. In search of a more reliable material we explored

alternatives to tantalum.

Other metals were eliminated because of either their magnetic properties, high vapor pressure

at 700 C, incompatibility with the quartz oven parts, higher brittleness, or excessive cost. We tried

nickel foils, assuming that heating them above their Curie point (≈ 500 ◦C) would render them

non-magnetic. The foils were less brittle but evaporated over time. The heating element alloy

KANTHAL (a FeCrAl alloy) required less power to reach a given temperature (see Fig. 5.20) but we

were concerned by its considerable outgassing in vacuum, even after annealing in air.

Previously, up to 4 kW of power was needed to heat the oven and vapor cell to 700 C. To put this

7In exploring polarization-sensitive detection for shorter wavelengths we did find one company, Boulder Vision Optik,
that produces dichroic polarizers with a peak transmission > 80% at 530 nm and good transmission in the 400-500 nm range.
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in perspective, given the total surface area of the heater foils, A ≈ 1800 cm2, and the total emissivity

of tantalum, ε1000 K = 0.14 [101], the power output for a completely unshielded oven with the foils

at 700 ◦C is only 1.4 kW. If we assume heat shielding reduces the power load by a factor 1.5-2

(see below) the observed power load implied a foil temperature of 1100-1200 C. This caused several

problems. First, it was difficult to find stereo amplifiers that would not overheat when run for weeks

at a time at the powers required, even though the foils were designed to have impedances similar

to audio speakers. Second, as mentioned above, the tantalum foils would eventually become brittle

and break. Lastly, blackbody radiation from the ovens dominated our signal, even with colored

glass and narrow band interference filters.

The original oven design had three layers of heat shielding made from clear quartz painted with

high emissivity paint. In the second version opaque quartz replaced the clear quartz.8The power

required by the oven to reach a given temperature greatly increased. Tantalum and copper foils

were wrapped around the quartz heat shields in an effort to reflect the heat back towards the cell.

This helped somewhat but the power required was still more than in the original oven.

To gain some understanding of the physics, we consider a simple model for the heater consisting

of one hot and one cold infinite plane at temperatures TH(C) with emissivities, εH(C) and reflectivities

ρH(C). Blackbody body radiation from plane H gives a power flux of εHσT4
H. If we denote the total

flux of power leaving each plane as JH(C) (as shown in Fig. 5.18), plane H also reflects back ρJC

towards plane C. By conservation of energy the difference in the two fluxes must be equal to the

flux, F, leaving plane C to the right. Thus we have the three relationships

JH = εHσT4
H + ρH JC (5.6)

JC = εHσT4
C + ρC JH (5.7)

F = JH − JC (5.8)

If the planes are opaque, i.e. ε = 1 − ρ, then solving for F gives

F =
σ
(
T4

H − T4
C

)
1/εH + 1/εC − 1

= εHCσ
(
T4

H − T4
C

)
, (5.9)

8Both the high emissivity paint and opaque quartz were used in attempt to bathe the vapor cell in more spatially uniform
blackbody radiation.
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Figure 5.18: Heat shields. On left: One hot (H) and one cold (C) opaque infinite plane are in thermal
equilibrium. The total flux of power radiated from the H(C) plane, JH(C), is the sum of the blackbody
power radiated, εH(C)σT4

H(C), and the power reflected from incoming radiation, ρH(C) JC(H), where
εH(C) and ρH(C) are the total emissivity and reflectance, respectively. On right: When a shielding
layer with possibly different emissivities, εS and εS′ , of its two sides is inserted between the hot and
cold planes the flux is reduced to FS.

where we have used an effective emissivity, εi j ≡
1

1/εi+1/ε j−1 . To examine heat shielding we will

consider H to be our oven and C to be a perfect room temperature blackbody with εC = 1. In this

case εHC = εH and

F0 = εHσ
(
T4

H − T4
C

)
. (5.10)

Now consider what happens if a third plane, S, is placed between the other two. For generality let

the side of S facing H have emissivity εS , while the side facing C has emissivity εS′ . The net flux

going from plane H to plane S must be equal to the net flux from plane S to plane C therefore

FH→S = FS→C = FS = εHSσ
(
T4

H − T4
S

)
= εS′σ

(
T4

S − T4
C

)
. (5.11)

Eliminating TS gives

FS =
εS′εHS

εS′ + εHS
σ
(
T4

H − T4
C

)
, (5.12)

and the shielding factor is

SF = F0/FS =
εH(εS′ + εHS)

εS′εHS
. (5.13)
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Figure 5.19: Mock oven for heat shield testing. Two heater foils were placed in the middle of a
stack of opaque quartz plates separated by quartz spacers. Various metal foils or plated pieces were
placed on top of the quartz plates nearest to the oven. Thermocouples recorded the temperature
the “oven” reached for a given input power.

Now we can consider several limiting cases. First, consider εS = εS′ � εH � 1, i.e. the shield is a

good reflector. In this case εHS ≈ εS and SF = 2εH/εS. Using the total emissivity of tantalum for

the hot plane, εH ≈ 0.15 [101, 102], and assuming a shield reflectivity of 95% gives SF = 6. One can

show similarly that n such shields give SF = 2nεH/εS.

Next consider εS = εS′ = 1, i.e. S is a blackbody. In this case εHS = εH and SF = 1 + εH ≈ 1.15.

Clearly reflective shields should work significantly better than high emissivity shields. One can

show that n blackbody shields give SF = 1 + nεH.

Last, consider the case where one side of S is reflective and the other side is a blackbody. For

either orientation one can show that SF = εH/εR, where εR is the emissivity for the reflective side.

A high emissivity side thus reduces the effectiveness of a reflective shield by a factor of two.

Returning to our apparatus, we hypothesize that the foil shields did not help significantly

because thermal insulation between the layers of the heat shields was poor. The mounting of the

foils was necessarily crude so there were points of contact between foils of adjacent layers (see

Fig. 5.2). However, this could be remedied by using a metal plating instead of foil. To test this

idea we made a mock version of the oven in a small test chamber (see Fig. 5.19). We focused on

gold because of its high reflectivity, low vapor pressure, and resistance to oxidation. We tried gold

coating quartz and alumina but found that it scratched easily. The difficulty of assembling the oven

precludes gentle handling of the heat shields. Next we tried gold coated copper plates. At high
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Figure 5.20: Tests of metal foil heat shields. The power required by the mock oven to reach a given
temperature is lessened by nearly a factor of two using foil heat shields. However, this is less
shielding than predicted by theory. The lowest curve is a test using KANTHAL rather tantalum for
the heating elements. Although KANTHAL is more efficient, it was never used because it outgasses
significantly in vacuum.

temperatures (above≈ 800 K) the gold migrated into the copper. A gold plating company suggested

a barrier layer of rhodium or silver to prevent the gold diffusion. Neither of these helped. Fig. 5.20

shows a summary of our tests. The metal shields lessened the power required to reach a given

temperature by a factor of two, which was less shielding than expected. This was probably partly

due to the shielding not completely surrounding the foils, which is also a problem in the actual

oven. In retrospect, lack of thermal insulation may have also contributed, even in the test setup.

Even though the thermal conductivity of quartz is low, a 300 − 400 K drop across the four spacers

gives a heat flow of over 50 W, which was a significant fraction of the input power. In the oven

used in the EDM apparatus, alumina nuts were used to separate the shield layers. This certainly

contributed to heat loss as alumina has a conductivity nearly 10 times that of quartz.

In the end, we abandoned the heat shields and now use a combination of ceramic fiber board

and blankets (Cotronics 360HS and 370) to insulate the oven (see Fig. 5.4). Despite being ex-

tremely porous, testing has shown that they are compatible with the typical vacuum pressure of

≈ 1 × 10−6 Torr in our apparatus. Their thermal conductivity is over 10 times smaller than that of

quartz, which is considered a good insulator itself. The temperature, Tc, on the cold side of the
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Figure 5.21: Thermal insulation. Cold side temperature versus thickness for a Rescor 360 board
with a hot side temperature of 700 ◦C. An average thermal conductance of C = 0.7 W m−1 K−1 is
assumed based on the datasheet from Cotronics, Inc.

ceramic board can be estimated by equating the blackbody power radiated per unit area on the cold

side to the power per unit area that thermally conducts through the board,

(Th − Tc)C
L

= σT4
c , (5.14)

where L is the thickness of the board, Th is the hot side temperature, and C is the thermal conductance.

Fig. 5.21 shows the cold side temperature as the board thickness is varied with Th = 700 ◦C. For even

1” of insulation the outside temperature drops to 150 ◦C. If the outside of the oven is treated as a 10”

blackbody cube, this corresponds to a power output of only 700 W. Doubling the thickness reduces

the power by a factor of 5. Tests in a small vacuum chamber confirmed that ceramic insulation gave

higher temperatures for the same power input compared to reflective shielding (see Fig. 5.22).

Using the ceramic fiber board and blanket insulation reduced the oven power load by a factor

of four. In addition the blackbody background was reduced by a factor of 5-10 which allowed us

to switch to wider interference filters for fluorescence detection. Putting tantalum foils around the

ends of the light pipe nearest the cell also helped to block blackbody radiation going directly from

the heater foils into the light pipe. The blackbody background seen in the detectors is now typically
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Figure 5.22: Ceramic insulation versus metal foil heat shield. An insulating 1/4” thick ceramic
fiber board lowered the oven power requirement to reach a given temperature versus a copper foil
heat shield. In theory the power drops an addition factor of 5 for each doubling of the insulation
thickness. 1 3/4” of fiber board are used in the actual apparatus.

similar in size to the fluorescence signal.

5.7 Spectral filters

The large angular spread and source size of our fluorescence make the use of interference filters

tricky. The bandpass of an interference filter shifts with angle of incidence. Thus even with

monochromatic radiation a larger bandpass is needed to collect all angles of incidence.

In the past, modeling had suggested that narrow bandpass interference filters should give the op-

timal signal-to-noise, i.e. the optimal ratio of fluorescence collection versus blackbody background.

Several changes necessitated a re-evaluation. First, the improved insulation of the oven reduced

the blackbody background substantially. Second, with a new gating circuit9the PMTs recover from

scattered light well enough that we can detect fluorescence at the same wavelength as the excitation

laser pulse. This allowed us to switch from excitation along |X, ν = 1〉 → |a, ν′ = 5〉 transition to

excitation on the |X, ν = 0〉 → |a, ν′ = 5〉 transition. The larger population of the ground vibrational

level increased the signal size by a factor of 3. Lastly, experience had shown that the signal and
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Figure 5.23: Effective wavelength and probability density for interference filters. On left: The
effective wavelength for 548 nm light passing through an interference filter at varying angles of
incidence. On right: The probability distribution assuming the angular distribution of light is
∝ sin(2.25θ), which peaks at 20 degrees. The various filters show different responses because of
their effective indices of refraction.

background transmissions predicted by a previous ray tracing simulation for interference filters did

not agree with experimental observations.

To determine the optimal filter we first took data with several interference filters of varying

central wavelength and bandwidth. The signal size, background size, beat contrast, and beat

frequency fit uncertainty (aka EDM uncertainty) were recorded for each filter. In addition, the same

values were recorded with the second PMT using a fixed filter combination. To correct for changes

in experimental conditions, e.g. cell temperature changes, laser frequency drift, etc., all parameters

were normalized to the reference PMT data.

Next we tried two methods for modeling the effect of interference filters. The first method created

a simple filter function based on the manufacturer’s specified central wavelength, transmission, and

bandwidth. We then calculated the “effective” wavelength for a given angle of incidence,

λe f f =
λ0√

1 −
(

sinθ
ne f f

)2
, (5.15)

where ne f f is the effective index of refraction of the interference filter. Given the probability distri-

bution for the angle of incidence of the fluorescence we can calculate the probability distribution

9The current circuit is based on [103] (see discussion in [81]). Hunter Smith is currently working on a PCB layout of a
new, more modular version [104].
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Figure 5.24: Modeled transmission of an Omega interference filter. On left: The red curve is the
modeled probability distribution for fluorescence from a 548 nm line with an angular distribution
peaked at 20 degrees. The green curve is the probability distribution multiplied by the model
transmission of the interference filter, in this case an Omega 16 nm bandpass filter centered at 554
nm. The total transmission of 44% is the area under the green curve. On right: The red curve is the
modeled blackbody distribution. The green curve is the transmission of the blackbody through the
filter integrated over the angular distribution.

for the effective wavelength,

p(θ)dθ = p(λe f f )dλe f f ⇒ p(λe f f ) = p(θ)
dθ

dλe f f
. (5.16)

Fig. 5.23 shows the effective wavelength and probability distribution for 548 nm light from the

|a, ν′ = 5〉 → |X, ν = 0〉 transition. We assume the fluorescence angular distribution is ∝ sin(2.25θ),

which peaks at 20 degrees. The total transmission of a filter is given by

T =

∫
T(λ)p(λe f f ) dλ. (5.17)

Fig. 5.24 shows the result for one filter along with a similar calculation of the blackbody transmission.

The blackbody background was assumed to have a spectrum given by the Wien law. The slope of

the intensity versus wavelength in previous observations [81] of the blackbody was consistent with

a temperature of 1200 K. We also tried the typical vapor cell temperature of 1000 K for comparison.

Because relative transmissions will be compared in the end, the results are only sensitive to the

slope of the blackbody curve and not the absolute height.

Fig. 5.25 shows a relative comparison between the modeled predictions and experimental ob-
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Figure 5.25: Top: Fluorescence signal sizes. Bottom: Blackbody background sizes. All measured
values are first normalized to the signal size measured simultaneously with a reference PMT, then
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Filters(company, central wavelength in nm, bandpass in nm, peak transmission): 1 - Omega, 554,
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with PMT gain reduced but corrected for.
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the central wavelength, bandwidth, and transmission of an interference filter. Shown above is the
measured transmittance, i.e. the transmission corrected for Fresnel reflections, for an Omega 16 nm
bandpass filter centered at 554 nm with a nominal peak transmittance of 90%.

servations for a variety of filters. Both the modeled and experimental values are scaled to their

respective values for filter 2. The agreement between model and experiment is not particularly

convincing. The enormous blackbody for filter 1, the Omega 16 nm bandpass filter, was expected

because it was designed to be used with a broader filter to block the red and infrared.

After this comparison it was not clear that we could reliably predict the transmission of the

fluorescence and blackbody from a filter’s specifications. In particular we were concerned that the

modeling of the interference filters was inaccurate for large angles of incidence. We also had some

concerns that blackbody radiation in the near infrared might be leaking through the combination

of colored glass and interference filters normally used in the experiment.

To reduce our uncertainty we set up an automated system for measuring filter transmission

versus incidence angle. A photodiode recorded the transmission through an interference filter

mounted on a computer controlled rotation stage. The wavelength was scanned using a computer
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controlled monochromator with a xenon arc lamp as the source light. We measured transmission

curves for a few colored glass filters to verify the setup. The results agreed well with their known

transmission curves. The interference filter transmissions were measured out to 1000 nm to allow

modeling of blackbody leakage outside the filter passband. The measured transmission curves did

change significantly at large angles of incidence (see Fig. 5.26).

Next, we performed the same analysis as above, only now numerically integrating over the

measured transmission curves. In addition we included the effects of colored glass IR blocking

filters. Past measurements had used KG4, but we hoped the sharper cutoff of BG39 and BG40 might

reduce the blackbody. For the blackbody analysis we took into account the quantum efficiency of

our PMT versus wavelength. Fig. 5.27 shows the results of this analysis grouped by color glass

filter.

The agreement is excellent for both signal and blackbody sizes, except for the 16 nm bandpass

Omega filter which still shows anonymously high blackbody transmission with the KG1 and KG4

colored glass. The good agreement for BG39 and BG40 colored glass, which completely block

light above 600 nm, suggests the blackbody leaks through at longer wavelengths. However, the

measured filter transmission is essentially zero up to 750 nm at which point the PMT quantum

efficiency is specified to be negligible.

Fig. 5.28 shows the measured and modeled EDM sensitivity for the various filter combinations.10

The optimal sensitivity is with the large bandpass filters which can collect fluorescence from decays

to both the ν = 0 and ν = 1 vibrational levels in the ground state (about 50% of the decays go to

each level). The gray bar is a model filter (based on scaling of the measured transmissions) where

we have varied the central wavelength and bandwidth in an attempt to find the ideal filter. In the

past we used the 104 nm bandpass Omega filter with two 16 nm bandpass Omega filters (which

would be worse than the purple bars in the figure). Based on these results switching to the 104 nm

bandpass Omega filter by itself increased our EDM sensitivity by a factor of 2. In addition, it does

not appear we could design a custom filter that would give a further improvement.

10Note this data was taken at zero electric field and assumed the uncertainty in the frequency fits during the EDM
measurement would be two times larger, as it is when using the beat erasure method (see Section 6.3.2).
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Figure 5.27: Modeled fluorescence and blackbody sizes are based on the measured transmission of
the interference and colored glass filters over wavelength and angle of incidence. Both modeled
and experimental values are scaled to their respective values for the Intor 36 nm bandpass filter.
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Figure 5.29: Scattering via refraction in a sphere. On left: A ray refracts twice as it enters and exits
the dielectric sphere. On right: The probability of impact parameter b is the ratio of the annulus to
the total cross-sectional area.

5.8 Christiansen filters

We also explored the possibility of using Christiansen filters [105]. Unlike interference filters,

the bandpass of Christiansen filters does not change with angle of incidence. We hoped that an

extremely narrow Christiansen filter would pass the fluorescence from one decay transition, which

is monochromatic but has a large angular spread, and reject the broadband blackbody radiation.

A Christiansen filter consists of a liquid filled with scatterers, typically small spheres of glass.

If the index of refraction of the liquid is adjusted, usually via temperature, to match the index of

the scatterers, light passes through unimpeded. If the indices differ, the light is deflected slightly

due to refraction. After many deflections the light can be completely scattered. In real materials

there is dispersion, i.e. wavelength dependence, of the index of refraction. Therefore for any given

temperature there will be a small range of wavelengths where the indices are close enough that

the light is transmitted with little scatter. A larger difference in the dispersion of the two materials

gives a narrower filter.

Hunter Smith tried implementing a filter using a long tube filled with glass spheres (30-270

micron Duraspheres from Mo-Sci) and index matching liquids (Cargille) without success. To get

a rough idea of the requirements for a practical filter we considered a simple analytic model. The
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basic principle is to determine the average angle scattered by a single sphere and then treat many

such scatters as a random walk in angle. From Fig. 5.29, the angles of incidence, θi and refraction,

θr, for a ray with impact parameter of b on a sphere of radius 1 are

θi = sin−1 b

θr = sin−1 ni

nr
sinθi = sin−1 ni

nr
b. (5.18)

For small differences in the index refraction, ni/nr = ni/(ni + ∆n) ≈ 1 − ∆n/n̄. The total change in

angle is then

∆θ = 2(θi − θr)

= 2
[
sin−1 b − sin−1

(
b − b

∆n
n

)]
≈ 2

d
db

(sin−1 b)b
∆n
n

=
2b

√

1 − b2

∆n
n
. (5.19)

where in the last step we have approximated the difference as a derivative.11 From Fig. 5.29 we can

see that the probability distribution of b for a sphere with radius, r = 1, is

p(b)db =
2πb db
πr2 = 2b db (5.20)

The average change in angle is then

∆θ =

∫ 1

0
∆θ p(b) db = 4

∆n
n

∫ 1

0

b2

√

1 − b2
=

∆n
n
π. (5.21)

If we consider a random walk in angle with a step size of ∆θ, we would expect that after N such

steps the angular distribution should be a Gaussian with variance, σ2
N = N(∆θ)2. For a random

walk of varying step sizes with variance, σ2
θ, the resulting distribution is a Gaussian with variance,

σ2
N = Nσ2

θ. This agrees well with an exact calculation by Roberts and Ursell [106] who considered a

random walk on a sphere consisting of angular steps with a given probability distribution. Fig. 5.30

11This approximation is good for b∆n/n� 1− b. For large ∆n/n the divergence near b = 1 causes later results to be correct
to within a factor of a few.
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Figure 5.30: Random angular walk. Blue: First 100 terms of the exact solution for 10000 scatters
with an index of refraction difference of 10−3. Red: Gaussian approximation. Green: Difference
between the approximation and exact solution [106] times 100.

shows the excellent agreement between the Gaussian approximation,

pGauss(∆θ) =
1
πσ2

N

e−∆θ2/σ2
N (5.22)

and the first 100 terms (which are needed for convergence) of the exact result,

pexact(∆θ) =
∑

n

2n + 1
4π

e−
1
4 n(n+1)σ2

N Pn(cos ∆θ), (5.23)

where Pn are Legendre polynomials, N = 10000 steps, and ∆θ = π∆n/n ≈ 3 × 10−3. The Gaussian

has a variance of one half the step size variance which may be due to the two-dimensional nature

of the angular walk.

The next step is to relate the angular probability distribution to an experimental observable.

As a crude estimate, we take the transmission of the filter to be the total probability that a ray is

scattered less than some angle, α, determined by the detection solid angle. In one example in the

literature [107], the incident light was collimated from a point source, passed through the filter, then

focused onto the slit of a spectrometer. In this case the detection focal length and the slit size would
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Figure 5.31: Theoretical transmission of the Christiansen filter test setup assuming a 30 cm long
tube filled with 30µm glass spheres and an index matching liquid from Cargille, 5,000 scatters, and
a detection angle of 0.2 radians.

determine the solid angle. Using (5.22) with α� 1 the transmission is

T =

∫ 2π

0

∫ α

0

1
πσ2

N

e−∆θ2/σ2
N sin(θ) dθ dφ ≈ 1 − e−α

2/σ2
N (5.24)

For α > σN, i.e. a detection angle larger than the scatter, T rapidly approaches one. For α� σN the

transmission decreases as α2/σ2
N giving a dependence of

T ∝
1
σ2

N

≈
1

π2N(∆n/n)2 ∝
n2

dLr2

(
1
/ dn

dλ

)2

, (5.25)

where we have used N = dLπr2, d is the number density of the scatterers, L is the filter length,

r is the scatterer radius, and dn/dλ is the differential dispersion. This dependence agrees with

Clarke [108], who treat the Christiansen filter as a series of phase scatterers on an incoming plane

wave and calculate the outgoing coherent power. However, they predict an exponential rather than

asymptotic decay.

Returning to our experimental efforts, Fig. 5.31 shows the expected transmission for the 30 cm

long tube filled with 30µm glass spheres and an index matching liquid, assuming 5,000 scatters and

a detection angle of 0.2 radians. The filter rejection in the visible is quite small which could explain



CHAPTER 5. APPARATUS 107

520 530 540 550 560 570 580
0.0

0.2

0.4

0.6

0.8

1.0

Wavelength HnmL

T
ra

ns
m

is
si

on

Figure 5.32: Theoretical transmission of a 1-m long filter filled with 10 micron spheres, assuming
100,000 scatters, 10 times the dispersion of the test setup, and a detection angle of 0.75 radians.
Even in this extreme case, the FWHM of 10 nm is hardly better than an interference filter.

why no effect was observed. The index matching liquid was used to avoid the need to control the

temperature of the tube. However the difference in dispersion between the glass spheres and the

liquid was quite small. Other filters in the literature [107, 109] have used liquids with an order of

magnitude higher dispersion.

For the PbO experiment, the fluorescence comes from an extended source with an angular

distribution that peaks at ≈ 0.4 radians. With this large angular spread, using a Christiansen filter

that acts as a light pipe might be advantageous. For a quartz light pipe any light that enters through

the end of the light pipe must undergo total internal reflection on the sides.12 Thus only rays that

have been scattered by the filter above the critical angle will be lost. For a long filter, this obviates

the need to have the filter and detector diameter increase as the source light diverges. Fig. 5.32

shows the best case result for a one meter long filter, filled with 10µm beads and a liquid with 10

times higher dispersion. The bandwidth is no better than our interference filters.

For a practical Christiansen filter for the PbO experiment, a higher dispersion is needed. Hunter

Smith did briefly explore the use of rare earth solutions as the liquid. In theory their dispersion near

absorption lines can be very large. Sarah Bickman had previously identified several absorption lines

12This is true for any material with an index of refraction greater than
√

2.
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near our fluorescence wavelength when she explored the possibility of using rare earth solutions

as absorptive filters [81].

In summary, although the passband of Christensen filters have no dependence on the angle of

the incoming light, their typical usage in the literature was either for collimated light or light from

a point source. In both cases a lens and a spatial filter on the detection side can reject light scattered

by a very small angle. An extended source, such as in our experiment, requires a larger scattering

angle which in turn requires a filter length that is not practical.

5.9 Microwave system

In our experiment microwaves are used mainly for driving rotational transitions in the a(1) state.

Initially we planned to use two frequency chirped microwave pulses to prepare the EDM state (see

Section 6.3.1). To preserve quantum beat coherence the microwave transitions must take place much

faster than a quantum beat period, which is typically on the order of microseconds. In addition

the central frequencies of the double pulses are changed at the 100 Hz repetition rate of the EDM

experiment . After finding no reasonably priced (< 60k$) commercial microwave generators that

could produce double pulses with large frequency modulation on these time scales, we built our

own system.

The basic principle of our system is to transfer the enormous flexibility and low cost of arbi-

trary waveform generators (AWG) at radio frequencies (RF), ≈ 31 MHz in our case, to microwave

frequencies. We do this by a combination of frequency multiplication and mixing. This method

certainly sacrifices some stability and spectral purity compared to commercial microwave genera-

tors. However, RF generators are typically stable to a ppm and with microwave line widths on the

order of tens of kilohertz in our experiment, this is good enough.

The hardware of our system (see Figs. 5.33 and 5.34) is controlled by a Labview program (“set

mw mx.vi”), written by Yong Jiang and myself, which lets the user select pulse widths, delays,

separation times, amplitudes, central frequencies, frequency chirp amplitudes, frequency chirp

directions, and polarization axes. The Labview program also automates real-time data collection,

averaging, analysis, logging, and display while varying any of these parameters (or several other

experimental parameters) over a specified range.

Fig. 5.35 shows an example timing diagram of the microwave system. First, the software
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Figure 5.33: Microwave system schematic. A RF arbitrary waveform generators produces an initial
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pulse modulated with a switch, and then mixed with a 13.1 GHz microwave reference to produce
output pulses at 14.1 GHz. An Agilent microwave generator can also produce the 14.1 GHz pulses
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CHAPTER 5. APPARATUS 111

~ ~
MW Polarization

to 14.1 GHz switch

AWG Channel Select
to Reed switch

MW pulse 1
to Or’d output

MW pulse 2
to Or’d output

Or’d output
to 1 GHz switch

AWG output

AWG Channel 1
Waveform frequency

AWG Channel 2
Waveform frequency

Trigger
to AWG

Laser pulse

10 10 5000-5000

Figure 5.35: The timing of the microwave system is achieved through programming of a BNC 565
8-channel pulse generator which is triggered by the Nd:YAG laser (blue pulses come from the BNC
565). The output of the two microwave pulse channels are added with a logical OR. When using
an RF AWG as a source, a long sine waveform is output and pulse modulated by a switch at 1
GHz after frequency multiplication. Each AWG channel can be programmed with a different time
dependence of the microwave frequency. The waveforms are programmed so that the frequencies
are smoothly varied to minimize distortion. A pulse to a Reed switch 5 ms before the laser pulse
selects one of the two AWG channels for output. A pulse to a switch at 14.1 GHz can select separate
polarizations for each of the two pulses in a waveform. If the Agilent microwave generator is
used as a source the OR’d microwave pulse channel is sent to the pulse modulation input and the
RF AWG sends waveforms similar to those shown above to the frequency modulation input. All
timing and frequency parameters are set by the user in a Labview program.
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generates a quasi-continuous sine waveform with the desired time dependence of the microwave

frequency and sends it to an AWG. The central frequencies at this point are in the range of 31.25 ±

2.5 MHz. For EDM data we wish to alternate preparing the molecules oriented with or against the

electric field each laser shot. This requires using a different set of frequencies for the microwave

pulses every other shot. To do this we load separate waveforms into two channels of a Tektronix

AWG2021. The AWG is triggered to output the waveforms after every laser shot. A digitally

controlled single pole-double throw (SPDT) Reed switch is used to select one channel for output

each shot.

Next, the waveform passes through two frequency quadruplers and a doubler. Before each

stage there are filters with a bandpass of ±7.5% of the central frequency to eliminate harmonics. A

waveguide bandpass filter removes harmonics at the output frequency of ≈ 1 GHz. At this point

a digitally controlled Mini-Circuits switch (ZFSWHA-1-20) is used to set the pulse widths, delays,

and separation. In the past we had used pulsed waveforms at the input of the multiplication chain

but found that the sharp edges in the waveform caused distortion and propagation delays on the

output because of the bandpass filters. The Labview program now generates longer waveforms that

start and end well before and after the desired output pulses. In addition, for frequency changes

between pulses or for frequency chirps the waveform is programmed to have a continuous phase.

Discrete jumps in phase also generated distortion.

Next, a 13.1 GHz phase-locked dielectric resonator oscillator (Microwave Dynamics) serves as

the local oscillator for a double balanced frequency mixer (MITEQ DB0130LA2). After mixing

with the 1 GHz waveform, the output at 14.1 GHz goes through a waveguide bandpass filter

to eliminate the 12.1 GHz sideband. A digitally controlled SPDT microwave switch (Advanced

Control Components S2X2) sends the waveform along one of two paths which correspond to

different microwave polarizations at the output. The switch is fast (< 100 ns switching time) so that

the polarization can be switched between the two microwave pulses.

Each path has a frequency doubler, a digitally controlled attenuator which sets the output power,

and some combination of fixed attenuators and amplifiers. At the output are two high power solid

state amplifiers, a Millitech MKT series and a Quinstar QPN series, with 1 dB saturation powers

of 1 watt and 5 watts, respectively. Note these amplifiers are designed only for microsecond scale

pulses and should not be used continuously at full power.

After the high power amplifier each path passes through a waveguide filter and a 20 dB direc-
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tional coupler. The coupler picks off 1% of the power which goes to a diode detector for monitoring.

Each path goes into a port of an orthomode transducer, a device which converts microwaves from

two rectangular waveguides into orthogonal linear polarizations in a circular waveguide. From

here the microwaves exit through a conical horn and then propagate through a solid cylindrical

piece of Teflon attached to one of the the quartz light pipes in our apparatus. Both the Teflon and

quartz light pipe act as oversized waveguides for the microwaves.

There are several alternative configurations for our microwave system when we do not need as

much flexibility.

For single pulses without frequency modulation or the quasi-continuous operation used in

absorption measurements (see Section 7.4) we use a single channel Agilent 33250B AWG as our

31.25 MHz source. In this case the AWG outputs a continuous sine wave at the specified frequency

and the switch at 1 GHz generates the pulse modulation. The frequency shift keying (FSK) feature

of this AWG is convenient for quickly changing the microwave frequency between laser shots.

We also initially used an Agilent 86120B microwave generator as our 14.1 GHz source. This

generator accepts a pulse modulation input and an analog frequency modulation input. Because

the central frequency of the generator can only be changed every 20 ms we used the frequency

modulation input for changing both the central frequencies and chirps of the microwave double

pulses. In this configuration the Labview program sends waveforms to the RF AWG for the pulse

modulation and frequency modulation inputs of the Agilent microwave generator. This method

of using the frequency modulation worked fairly well but, as discussed in Jiang [52], the central

microwave frequency shifted systematically for large frequency chirps. In addition the frequency

modulation input had a limited bandwidth of 10 MHz and the frequency modulation depth was

limited to 16 MHz. By using an AWG the modulation depth in our system is limited only by the

bandpass filters to ≈ 300 MHz. The modulation frequency is limited by the output frequency of the

AWG to ≈ 40 MHz.

The Agilent microwave generator could also be used as an independent second channel. Simul-

taneous pulses could be used to produce circular polarization, although the reference frequencies

of the generators would have to be locked to each other. Two channel operation could also be

useful for stimulated Raman adiabatic passage (STIRAP) which requires two overlapping pulses of

orthogonal polarizations.
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5.10 Dye laser system

The original laser system in this experiment was extremely simple compared to most AMO exper-

iments (see Section 5.1 and Fig. 5.7). This was mostly due to the high temperature of our vapor

cell. Large Doppler widths for the molecular transition lines meant our laser frequency stability

and linewidth requirements were modest.

To quickly reprise, our system started with a frequency doubled Nd:YAG laser (Spectra GCR

190-100) which generated 100 mJ pulses with 6-7 ns width at a repetition rate of 100 Hz. The YAG

pumped a dye laser (Lambda Physik Scanmate 2E) which used Fluorescein 548 dye to produce

≈ 10 ns, 15 − 25 mJ pulses with a wavelength of 548.2 nm. An intracavity étalon in the dye laser

nominally limited the frequency width of the pulses to 1 GHz.

5.10.1 Laser line width problem

We had long suspected that the frequency widths of the dye laser pulses were much larger than the

1 GHz manufacturer’s specification. Scanning the dye laser over rotational lines in the a(1) state

produced a fluorescence excitation spectrum with line widths closer to 2 GHz. Some of the excess

width was due to the convolution of the laser line shape with the Doppler profile of the rotational

lines, which has a FWHM of ≈ 800 MHz. More concerning was the large background fluorescence

observed between well separated rotational lines (see the black curve in the top of Fig. 5.36). It was

difficult to find any frequency at which no fluorescence was observed. However, at that point it

was unclear whether this was due to the laser or some effect of the molecules.

The key to unlocking this mystery was the use of quantum beats. For the EDM measurement

we observe quantum beats between the |a, J = 1,m = ±1〉 sublevels. The “beats” are the intensity

modulation of the fluorescence with a frequency given by the Zeeman energy splitting between

the sublevels. Because the Zeeman shift is different for each rotational line (see Section 3.5.3) the

beat frequency is unique to each line. Thus the line shape of even completely overlapped lines

can be measured by monitoring the amplitude of the quantum beats for each of the lines. In fact,

calculations had suggested that when we tuned to the J = 1 line for the EDM measurement the

amplitude of the J = 1 quantum beats should be one half the fluorescence size, i.e. 50% contrast. We

had long attributed the fact that we observed 10 − 15% contrast to either background fluorescence

from other nearby rotational lines or a broad background in the laser.
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Figure 5.36: Top: Fluorescence spectra from a scan of the dye laser frequency. The black points
are data, the red curve is a simulation using the laser line shape inferred from the quantum beat
spectra below, and the green curve is a simulation using an optimal laser line shape with a FWHM of
800 MHz. Note the small bump labeled R0 is the transition used for the EDM measurement. Bottom:
Quantum beat spectra of the same lines. The frequency of quantum beats (intensity modulations in
the fluorescence) are unique for each rotational level. Each curve is the amplitude of the quantum
beats at the associated beat frequency for the denoted rotational line. All nine curves can be obtained
in a single laser scan. Labels above the peaks indicate the rotational transitions from the ground
state.
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Figure 5.37: Dye laser spectrum from quantum beat spectroscopy. The purple triangles are the
quantum beat amplitudes for the J = 5 line as the laser is scanned over the Q5 transition. The blue
squares are a curve corrected for saturation of the transition (a peak saturation parameter of 4 is
assumed). The line shape is well approximated by the sum, the line in red, of two Lorentzians with
widths of 2 GHz, shown in dashed green, and 14 GHz, shown in dotted green.
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To measure the amplitude of the quantum beats at different frequencies the fluorescence signal

is Fourier transformed. Peaks in the Fourier transform are visible for each of the rotational beat

frequencies. By monitoring each of the peak heights during a laser scan, background free line

profiles are obtained. The bottom half of Fig. 5.36 shows the beat frequency amplitudes as the

laser was scanned over several rotational lines. The line shapes have a narrow central peak but

unexpectedly long tails. Fig. 5.37 shows the fit for the sum of two Lorentzians to an isolated line

profile. The line shape is first corrected for saturation of the transition. For all lines we consistently

observe a narrow central peak with a FWHM of≈ 2 GHz and an offset broader peak with a FWHM of

10−14 GHz. The top half of Fig. 5.36 shows the good agreement between the observed fluorescence

spectra and a simulation based on the fitted line profile. The long tail accounts for the fluorescence

seen when the laser is not resonant with any of the lines. The small peak marked R0 is the transition

used for the EDM experiment. The background is over four times the useful signal size. The

green curve is a simulation using an optimal Lorentzian line shape with 800 MHz FWHM. With this

theoretical line shape the background fluorescence for the EDM measurement is nearly completely

eliminated.

Because the dye laser line width without the intracavity étalon was similar to the width of the

broad peak seen in the quantum beat spectrum, we initially attributed the broad peak to the design

of the dye laser. We attempted to insert a second étalon into the laser cavity to improve filtering. A

broader bandwidth étalon had no discernible effect while the loss from a narrower étalon pushed

the laser below threshold.

5.10.2 Laser excitation efficiency problem

In addition to the line width problems, we had also long suspected that the number of molecules

driven to the excited state by the dye laser was lower than what was expected from calculations.

Extensive modeling of the collection efficiency of our detection system (see [81]) allowed us to

convert the number of fluorescence photons detected into an estimate of the number of molecules

excited. We could also calculate the density of lead oxide in our cell using vapor pressure curves

and the measured temperature of the cell. A comparison of the two estimates gave an excitation

efficiency, i.e. the fraction of available molecules excited, of much less than 1%.

Later, using microwave absorption (see Section 7.5.3), we directly measured the PbO density
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and found that vapor pressure curves we had previously used were roughly an order of magnitude

high. Even with this correction we estimated the dye laser excitation efficiency was 2 − 4%.

Further microwave absorption measurements of the ground and excited state population densities

immediately after laser excitation inferred an efficiency of ≈ 10%.

We can estimate the probability of excitation given the absorption cross section, σ, for the

|X, ν = 0, J = 0〉 → |a(1), ν′ = 5, J′ = 1〉 transition. The cross section is related to the natural line

width and the laser line width by [86]

σ =
λ2

2π
2J′ + 1
2J + 1

ξγ0

γlaser
, (5.26)

where λ is the transition wavelength; 2J′ + 1 and 2J + 1 are the degeneracies of the excited and

ground state levels; ξ is the branching ratio or fraction of molecules which decay back to the

bottom state of the transition; γ0 is the natural line width; and γlaser is the laser line width. The

branching ratio, ξ, is the product of the Franck-Condon and the Honl-London factors which give the

branching ratios to vibrational and rotational levels in the ground state, respectively. The Franck-

Condon factor for this transition is ≈1/2. The forbidden nature of this electronic transition prevents

a direct calculation of the Honl-London factor. We estimate the Honl-London factor to be 1/3 from

observations of the relative fluorescence sizes of various rotational levels [52]. Using the lifetime of

the a(1) state, τa = 80µs, a laser line width of 2π × 2 GHz, and a transition wavelength of 550 nm

gives σ = 2.4 × 10−16 cm2. The excitation rate is the absorption cross multiplied by the photon flux,

Φ. Therefore the probability of excitation is

P = σΦT, (5.27)

where T is the laser pulse length. A 10 mJ pulse, 6 ns long with a beam diameter of 1.5” corresponds

to a flux of Φ = 4 × 1023 photons cm−2 s−1. This gives P ≈ 35% which is 3.5 times higher than any of

the estimates based on observed signal sizes.

Adding to the confusion, measurements of the fluorescence size versus laser power suggested an

excitation efficiency of nearly 50%. At low laser powers, the fluorescence size should be proportional

to the laser power as the excitation rate from the ground state increases. At higher laser powers a

significant population builds up in the excited state and stimulated emission can drive the molecules
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Figure 5.38: Saturation of quantum beats. Measuring the integrated fluorescence signal and the
quantum beat amplitude versus dye laser power shows that the fluorescence increases roughly
linearly with power while the quantum beat amplitude increases in a manner consistent with a
saturation power of 0.26 W.

back to the ground state. At this saturation point the fluorescence size increases only as the square

root of the laser power and the populations in the ground and excited states approach an equilibrium

of 50%.

Fig. 5.38 shows the total fluorescence size and quantum beat amplitude versus laser power with

the laser tuned to |X, J = 0〉 → |a, J = 1〉 transition. The linear dependence of the total fluorescence is

consistent with excitation of nearby rotational lines by the broad but lower power tails of our laser

spectrum. The square root dependence of the beat amplitude, which is proportional to the number

of molecules excited to the J = 1 state only, is consistent with a saturation power of 0.26 W.

We now believe that the narrow 2 GHz peak in the dye laser spectrum is the result of averaging

many individual laser pulses of 1-3 narrower lines, each of which could be as small as the Fourier

transform limit of 30 MHz. This behavior is typical of pulsed dye lasers [110–112] and is due to

different longitudinal modes of the laser cavity dominating each laser shot. Each of the modes

saturates a small velocity class in the Boltzmann distribution of the molecules while leaving the

others unexcited. In this case the excitation fraction is roughly given by the ratio of the area of the

narrower line width(s) to the Doppler width. This model could explain both the low excitation
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efficiency and the saturation behavior (i.e., signal ∝
√

power) of the beat amplitude with increased

laser power.

5.11 Seeded dye laser

To eliminate both the broad line width and low excitation efficiency problems with the commercial

dye laser, we built our own seeded dye amplifier system [113]. In an unseeded dye laser system

a cavity is placed around a dye cell. The pump laser excites the dye molecules and as the first

molecules spontaneously decay they emit light into the cavity over a broad wavelength range,

typically tens of nanometers. Some type of spectral filter introduces loss in the cavity for all but the

desired frequency. The remaining photons pass through the dye cell and stimulate emission into

the cavity which leads to gain and lasing at the desired frequency.

In a seeded dye amplifier, a continuous wave (CW) laser at the desired frequency passes through

the dye cell. When the pump pulse excites the dye molecules the CW laser stimulates emission and

after further gain the frequency spectrum of the output pulse matches the frequency spectrum of

the CW laser (albeit transform-broadened due to the finite duration short pump pulse). The line

width of commercial CW diode lasers is on the order of megahertz but can be broadened using

frequency modulation of the control current to match the Doppler width of the molecular transition

lines. Thus by using a seeded dye amplifier we have exquisite control over the output frequency

spectrum.

CW seed laser

In theory, to seed our dye laser at 548 nm there are two options. The first is to use a CW dye laser

to seed the pulsed dye amplifier. CW dye lasers are expensive and notoriously difficult to use. In

addition there is no easy way to broaden the line width to match the Doppler width.

The second option is to use a diode laser. In the last decade there has been an enormous increase

in the wavelength range covered by CW diode lasers. Unfortunately, it is notoriously difficult to

manufacturer diodes at the green wavelengths we use.13 Thus, to make the seed laser, we have to

frequency double an infrared (IR) diode laser with a nonlinear crystal.14 With CW lasers it is difficult

13Most green laser pointers have a frequency doubled solid state laser that emits at a fixed wavelength.
14A fiber laser could also be used, but at that time there were no off-the-shelf fiber lasers at 1096 nm.
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to get significant power at the doubled frequency because doubling efficiency is proportional to the

square of the input laser intensity. To give some idea of the problem, the doubling efficiency of the

pulsed YAG is about 30% and the peak intensity during the 6 ns pulse for a 1 cm diameter beam is

60 MW cm−2! Typically the solution for CW lasers is to place the doubling crystal in a high finesse

cavity and focus the laser as tightly as possible inside the crystal. However, a high finesse cavity

also has a narrow resonant line width. This is incompatible with the relatively broad line width of

800 MHz needed to match the Doppler width of the excitation transition.

Fortunately, the relatively new technology of optical waveguides made from periodically poled

doubling crystals offers single pass doubling efficiencies up to tens of percent for CW lasers. The

efficiency of doubling in bulk crystals is ultimately limited by diffraction which causes the laser

to diverge more quickly the tighter it is focused. By confining the beam to an optical waveguide

less than 5µm wide, the laser intensity remains high along the entire length of the crystal. Periodic

poling ensures that the doubled light from different parts of the crystal remains in phase, preventing

destructive interference.

5.11.1 High power infrared laser

Our seed laser system (see Fig. 5.39) begins with an infrared 1096 nm laser diode in a DL PRO

mount from Toptica with a maximum output power of 150 mW. The laser frequency is stabilized

in the DL PRO with a proprietary external cavity design which minimizes beam deflection as the

frequency is tuned. The laser frequency can be coarsely adjusted by changing the voltage to a

piezo which tilts a diffraction grating in the external cavity. Adjusting the laser diode current gives

more precise frequency control. The electronics for the DL PRO have a feedforward adjustment

which automatically changes the laser current in proportion to the piezo voltage. By adjusting the

feedforward we have been able to tune the laser over 65 GHz without mode hops using external

control of the piezo voltage. Note that the optimal feedforward adjustment is highly dependent on

the piezo voltage sweep rate. The current over a 65 GHz scan can change by more than 25% which

causes heating of the laser diode. If the current is changed significantly in less than the few seconds

it takes for temperature stabilization, the tuning properties of laser diode change.

At the output of the DL PRO a beam shaping anamorphic prism pair changes the elliptical beam

to a roughly circular cross section. Two optical isolators prevent reflections from entering the laser
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Figure 5.39: Green seeded dye laser system. ECDL: external cavity diode laser, APP: anamorphic
prism pair, FI: Faraday isolator, λ/2: half-wave waveplate, CL: cylindrical lens, PM SMF: Polariza-
tion maintaining single mode fiber, PPLN: periodic poled lithium niobate, FR: Faraday rotator, PBS:
polarizing beamsplitting cube, BS: beamsplitting cube, ACL: achromatic lens doublet. Description:
A Toptica 1096 nm diode laser is amplifier by a tapered amplifier chip to an output power of 500
mW. This is launched via a bare SMF PM fiber into a PPLN waveguide doubling chip. 20-60 mW of
green power are used as the seed for a four pass dye amplifier pumped by a fraction of the power
from an Nd:YAG laser. The output of the four pass amplifier makes one pass through a larger
dye cell pumped by the remainder of the power from the YAG laser. The output pulses are 10 ns
long, 200 MHz wide, with powers of 10-20 mJ at a repetition rate of 10 Hz. A flat-flat Fabry Perot
measures single shot frequency spectra of the output pulses.



CHAPTER 5. APPARATUS 123

cavity which can cause instability and possibly damage the laser diode. A second anamorphic

prism pair shapes the beam profile to roughly match the profile of the beam coming from the input

side of a tapered amplifier chip. A λ/2 waveplate is used to rotate the polarization for optimal

amplification.

The tapered amplifier is in a mount with two adjustable aspherical lenses for coupling into the

chip and collimating the output.15 The mount is on a temperature controlled aluminum block. To

achieve the maximum output power of 500 mW the temperature of the mount is kept well below

room temperature by a thermoelectric cooler (TEC). A thermistor mounted near the amplifier chip

provides feedback to a temperature controller which runs the TEC. The entire amplifier system was

originally set up by Lucas Willis.

Only one axis of the output beam from the tapered amplifier is collimated by the aspheric lens.

The second axis is collimated with a cylindrical lens. With the proper choice of focal length the

collimated beam is roughly circular. Positioning the beam in the center of both lenses is crucial to

obtaining a decent output beam shape.

Next the amplified beam passes through an optical isolator. The rejected light from the isolator

is picked off and fiber coupled to a confocal Fabry-Perot cavity for monitoring of the frequency and

to determine if the diode laser is running single mode. The isolator rotates the polarization to a 45◦

angle between horizontal and vertical. A λ/2 waveplate rotates the polarization back to vertical or

horizontal before it reaches a dielectric mirror.

After the mirror, a second λ/2 waveplate on a rotation stage is used to align the polarization

with one of the axes of a polarization maintaining (PM) single mode fiber. An adjustable mirror

mount holds a fiber collimator (Thorlabs CFC-5X-C), which has a z-axis adjustable collimating lens.

Note that if the beam polarization is not horizontal or vertical when it hits the dielectric mirror the

polarization after the mirror is elliptical. When coupled into the PM fiber, the elliptical polarization

makes the output power strongly temperature dependent regardless of the orientation of the PM

fiber axis.16

15See Appendix C for alignment hints.
16See Appendix C for alignment hints.
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5.11.2 Optical waveguide frequency doubler

The output end of the PM fiber is mounted on a 3-axis sub-micron positioning stage (Thorlabs

MAX312) with differential adjustment knobs and piezo actuators. For efficient coupling the bare

fiber must be placed within a few microns17 of the MgO doped periodic poled lithium niobate

(MgO:PPLN) waveguide doubling chip (HC Photonics).

For a given wavelength there is one temperature at which the doubling efficiency of the PPLN

chip is maximized. For our particular chip this temperature is 60− 70 ◦C for a doubled wavelength

of 548.2 nm. The chip temperature is controlled by an oven designed and machined by Emil Kirilov.

A brass piece heated by a small thermoelectric cooler (TEC) holds the chip. This piece sits inside a

brass enclosure which itself sits on a large aluminum block. A large TEC run with a current supply

provides course temperature control over the aluminum block, while the smaller TEC maintains

the chip temperature. A thermistor mounted on the brass piece near the chip provides feedback to

a TEC controller (Wavelength Electronics) for the small TEC. The original oven from HC Photonics

is no longer used because its temperature servo relied on pulse modulation of the heater current.

Periodic thermal expansion led to changes in both the coupling efficiency, causing output power

fluctuations of up to 40%, and the pointing of the output beam.

There are 16 waveguide channels, less than 5µm wide, in two groups of 8 which lie on the top of

the doubling chip. The channel specified for use is the 11th from the left (see Fig. 5.40). We believe

that in the manufacturing process the channels are each given a slightly different poling period.

Testing determines which is optimal for the customer. The 8 channels on the right all work well

albeit at slightly different temperatures for a given wavelength. We have avoided using the 11th

channel thus far to save it for actual data taking. This was fortunate because, as we will discuss

below, the output coating on the 10th channel was destroyed.

An achromatic lens brings the output beam of the PPLN chip to a slight focus. After the lens, the

second and third mirrors in the beam path have coatings which separate the remaining fundamental

frequency from the doubled frequency by reflecting the green and transmitting the IR. A second

lens collimates the beam at a diameter of ≈ 2 mm. The green power should always be measured

after the two harmonic separator mirrors as the remaining IR power at the output of the PPLN

chip is larger than the green power. The green beam then passes through two isolators providing

17See Appendix C for alignment hints.
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Figure 5.40: Periodic poled lithium niobate waveguide chip. There are 16 waveguide channels in
two groups of 8 on the top surface of the chip. A red dot defines the orientation of the chip. Channel
11 was spec’d by the manufacturer. The coating on the output of channel 10 has been destroyed.
The right group of channels seem to work the best, although at different temperatures.

approximately 90 dB of isolation.

Before the isolators we have measured green powers > 60 mW with an input IR power to the

PPLN chip of≈ 250mW. Initially the output power changes significantly with a temperature change

of a couple degrees. However after several days the output power slowly drops to below ≈ 20mW

and is relatively insensitive to temperature changes. We suspect this is due to photorefractive dam-

age. Papers in the literature [114–116] suggest the reduced doubling efficiency is due to formation

of charge centers which change the index of refraction in the waveguide. The manufacturer’s spec-

ified output power was 20 mW for an input power of 150 mW. After contacting the manufacturer

they agreed it is most likely a photorefractive effect and suggested we keep the green power below

20 mW. They also said newer versions of the chip with different dopings are less susceptible to this

effect.

For considerations in future purchases, many crystal manufacturers now suggest that using a

phase matching temperature (which is set by the poling period) near 200 ◦C can reduce or eliminate

photorefractive effects. Using stoichiometric rather than congruent lithium niobate also helps [114].

As a last recommendation, one can get a fiber pigtailed directly to the waveguide chip eliminating
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Figure 5.41: Four pass seeded dye amplifier. WP = λ/2 waveplate, GL = Glan laser polarizer,
FR = Faraday rotator, PBS = polarizing beam splitter, HP = horizontal polarization, VP = vertical
polarization. The polarizers transmit HP and deflect VP. The CW seed beam enters from the left
with VP. WP1 rotates to HP and the beam passes through the GL polarizer. The FR rotates the
polarization 45 degrees and WP2 rotates the polarization 45 degrees back to HP. The beam passes
through PBS1, the dye cell and PBS2. WP3 rotates to VP and the beam is now deflected by PBS1 for
a second pass through the dye cell. PBS2 deflects the beam to a diffraction grating which is aligned
so that the first order retroreflects. PBS2 deflects the beam for a third pass through the cell and
PBS1 deflects the beam upwards. WP3 rotates to VP and the beam now passes through PBS2 for a
fourth pass through the dye cell. The beam continues through PBS1 and is rotated 45 degrees by
WP1 and an additional 45 degrees by the FR (which rotates the same direction independent of the
beam polarization) to VP. The GL polarizer deflects the beam for output.

alignment to the chip.

The damage we observed may be reversible by heating the chip to 200 ◦C overnight. Note that

heating to 200 ◦C requires disassembly of the current PPLN mount as indium foil was used to make

thermal contact between the small TEC and the brass piece. Indium was used rather than thermal

grease to prevent vapors from possibly contaminating the PPLN chip.

5.11.3 CW seeded dye amplifier

After the isolators the beam enters a seeded dye amplifier based on the designs in [117, 118].

Through clever use of polarization (see caption for Fig. 5.41) the beam passes through the dye cell

in both directions with horizontal and vertical polarizations for a total of 4 passes.18 A grating after

the second pass provides some frequency selectivity so that amplified spontaneous emission (ASE)

can be separated from the amplified seed beam on the output. The dye cell is pumped from the

18See Appendix C for alignment hints.
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Figure 5.42: Fabry Perot. Transmission of monochromatic light through two parallel mirrors occurs
at discrete angles when there is constructive interference between the rays from multiple bounces.
Constructive interference occurs when the path length difference of two rays is an integer multiple
of the wavelength.

side with 7-10 mJ of the pulsed YAG. After four passes we obtain 1-2 mJ pulses, 10 ns pulses at the

frequency of the CW seed laser. This represents a gain of over 107.

From the pulsed dye amplifier the beam is slightly expanded and passes through a second larger

dye cell for further amplification. This dye cell is pumped with the remainder of the power from the

pulsed YAG. The YAG beam is split between the two dye cells using a high power λ/2 waveplate

in a rotation mount and polarized beam splitting cube. The power split is adjusted to optimize the

the size of the quantum beats in the fluorescence signal. The path length of the YAG to the second

dye cell was adjusted so that the pump pulse arrives within a nanosecond of the output pulse from

the first dye cell. Pulse energies as high as 20 mJ can be obtained but we see better results with

energies below 10 mJ.

5.11.4 Fabry Perot

To analyze the frequency spectrum of our pulsed laser system on the benchtop, we use a flat-flat

Fabry Perot which is nothing more than flat mirrors mounted parallel to each other. Fig. 5.42

shows the principle of the device. A plane wave entering at an angle can be transmitted through
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Figure 5.43: Fabry Perot image. The raw Fabry Perot image of a single pulse from the four pass
seeded dye amplifier. The radial coordinate is a non-linear function of frequency. The frequency
range between each ring is ≈ 14 GHz.

the two mirrors when there is constructive interference between the rays from multiple bounces.

Constructive interference occurs when the path length difference for two rays is an integer multiple

of the wavelength,
2d

cosθ
− 2d sinθ cosθ = nλ→ cosθ =

nλ
2d
. (5.28)

Thus if monochromatic light is sent towards the mirrors at all angles it will only be transmitted at

the specific angles given above. If a lens is placed after the mirrors, a ring is formed in the focal

plane for each of the angles. From Eq. (5.28) one can derive a relationship between the radius of a

point in the focal plane and frequency.

The main motivation for using a flat-flat Fabry Perot is that it allows measurement of the entire

frequency spectrum of the laser in a single shot. Most other methods measure a single frequency

per shot and thus only give an average spectrum.

Our Fabry Perot consists of two ultra-flat mirrors (λ/20 from CVI) mounted in ultra-stable mirror

mounts with differential adjustment knobs (Thorlabs KS2D). For even finer adjustment small piezo

rings have been placed underneath the adjustment screws. A piece of ground glass is mounted

before the input mirror to scatter the incoming light. An achromatic lens is mounted on the back

mirror to form the spectrum image (see Fig. 5.43). A Mightex CCD camera captures the image

and a Labview program allows the user to interactively mark the position of a ring and correct



CHAPTER 5. APPARATUS 129

- 2 0 0 0 - 1 0 0 0 0 1 0 0 0 2 0 0 0

0

1

2

3

4

5

Fa
bry

 Pe
rot

 ou
tpu

t (a
.u.

)

F r e q u e n c y  ( M H z )

Figure 5.44: Frequency spectrum of the seeded dye laser using the flat-flat Fabry Perot. The fitted
line width of 420 MHz is consistent with the resolution of the Fabry Perot for this measurement.
The data comes from scaling, radial binning, and averaging one of the rings in Fig. 5.43.

for ellipticity. The pixels are then scaled, binned radially, and averaged to give a linear frequency

spectrum.

5.11.5 Results with the new laser system

The raw image of the output from the Fabry Perot for a single pulse of the four pass seeded dye

amplifier is shown in Fig. 5.43. The Lorentzian fit of the resulting frequency spectrum, shown in

Fig. 5.44, gives an upper limit for the line width of less than 420 MHz, which is over five times

narrower than the line width of the commercial dye laser we had previously used. The resolution

of the Fabry Perot for this measurement was estimated to be 400 MHz.

Next we sent the output of the seeded dye laser into the vapor cell and scanned the laser

frequency over several rotational lines while monitoring the amplitude of the quantum beats in

fluorescence (as described in Section 5.10.1). Fig. 5.45 shows the resulting spectra using the four

pass amplifier only, on the left, and the four pass amplifier plus the second amplifier dye cell,
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Figure 5.45: Quantum beat spectra with seeded dye laser. Top left: a(1) state transition using the
four pass amplifier only. The fit is a Gaussian with a FWHM of 830 MHz which is consistent with
the Doppler width. Top right: a(1) state transition using the four pass and second dye cell amplifier.
The fit is two Lorentzians with FWHM of 1000 MHz and 8000 MHz. Bottom left: A state transition
using the four pass amplifier only. Because this transition is stronger and saturates at a lower power
the broad tail is evident even at low power. Bottom right: A state transition using four pass and
second dye cell amplifier. Note the relative height is meaningful between left and right graphs only.
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Figure 5.46: With higher power the broad spectral tail is evident in the Fabry Perot spectrum of
the four pass dye amplifier. The tail is on the correct side to explain the tails seen in fluorescence
spectra. Note that the 2 GHz FWHM of the central peak is limited by the low resolution of this
particular measurement.

on the right. The top and bottom graphs are scans over a rotational line in the a(1) and A states

respectively. The narrow peaks are consistent with the Doppler width which suggests the laser line

width is significantly smaller than the Doppler width. However it is also clear that there is a broad

tail very similar to that seen in the spectra using the commercial dye laser (compare with Fig. 5.37).

Because the A state transition is stronger and thus easier to saturate, the tail is evident even when

using only the low power four pass amplifier.

The fact that we see the same shape in transitions to two different electronic states and many

rotational levels makes it very unlikely this is an effect due to the molecules. It is also difficult to

imagine a molecular mechanism that could lead to a line width of many gigahertz, which implies

a timescale of hundreds of picoseconds. Collisions occur at kilohertz frequencies in the vapor cell.

Stark shifts from stray electric fields would decrease with rotational level.

To confirm that the broad spectral tail was due to the laser we revisited our measurements of

the spectra using the flat-flat Fabry Perot. Because the molecular transition is saturated the height
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Figure 5.47: Fabry Perot image of YAG pulse. The frequency range between groups of rings is
≈ 27 GHz. The Spectra YAG is specified to have a line width of 30 GHz. Because of the way the
CCD shutter and readout work, each line in the image is the result of a single pulse but the whole
image has several pulses. The change in modes between two pulses is evident between the top and
bottom of the image.

of the spectral tail relative to the central peak is enhanced in the fluorescence spectra. In the first

measurement (see Fig. 5.43) we had fiber coupled a small fraction of the output beam to the Fabry

Perot. The peak height of the rings was only 5 ADC counts. Fig. 5.46 shows a spectra with a

much stronger signal, but lower frequency resolution. The 2 GHz FWHM of the peak is due to the

resolution of the Fabry Perot in this measurement. Even with the poor resolution a broad tail is

evident. The tail is also on the correct side for explaining the fluorescence spectra.

5.11.6 The YAG laser

One common element between the seeded dye laser system and the commercial dye laser we

previously used was the YAG laser used to pump the dye. After searching the literature we

found several papers (e.g. [119, 120]) which mentioned frequency broadening of dye laser pulses

due to amplitude fluctuations in the pump pulse. Amplitude fluctuations in the pump imprint
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amplitude fluctuations in the dye pulse which show up as frequency sidebands in the spectrum.

In particular multimode YAG lasers often exhibit beating between longitudinal modes in the few

gigahertz frequency range[120]. Additionally, changes in the excited state population of the dye,

during amplitude fluctuations of the pump, can modulate the index of refraction of the dye and

lead to phase fluctuations in the output pulse. Some combination of the both amplitude and phase

modulation is needed to explain the one-sided nature of the observed spectrum.

The Spectra-Physics Nd:YAG laser we use as a pump has a specified line width of 30 GHz.

Fig. 5.47 shows the image of a YAG laser pulse after the flat-flat Fabry Perot. The frequency range

between sets of rings is ≈ 27 GHz. The individual modes are clearly visible and the large line width

could easily lead to mode beating well over 10 GHz.

We have now traded in the Spectra-Physics YAG for a used Coherent Infinity YAG laser. The

Infinity has twice the output power of the Spectra-Physics YAG and is designed to be inherently

single mode. If this laser does remove the spectral tail from the dye laser pulses, the elimination of

background fluorescence should improve our EDM sensitivity by a factor of 2. In addition, if the

seeded dye laser line width is matched to the Doppler line width, an improvement to 50% excitation

efficiency would give another factor of 2 increase in EDM sensitivity. If both these improvements

are realized, our statistical sensitivity would surpass that of the Berkeley Tl limit in less than one

day of integration.



Chapter 6

EDM measurement methods and

results

In this chapter we will delve into more detail of the state preparation and detection methods used

in the EDM measurement. We will follow much of the discussion and notation in a previous

paper[29]. After discussing these methods we will present the first results of the experiment. While

the limit placed on the electron EDM from these results was over an order of magnitude worse

than the current experimental limit, the sensitivity was ultimately limited by statistics. Several

possible systematics were examined and found to be consistent with zero. Limits placed on these

systematics suggest they should not be an issue as the statistical sensitivity of the experiment is

improved.

Note that much of the discussion below will use the notation and assume the results in Section 3.5,

which discussed the structure of the |a(1), J = 1〉 state.

6.1 Fluorescence detection of quantum beats

The EDM measurement starts with excitation of the transition |X, ν = 0, J = 0,M = 0〉 → |a, ν′ = 5, J′ = 1〉

by a pulsed dye laser. If the polarization of the laser pulse is in the x̂ direction, transition matrix ele-

ments ensure that a coherent superposition of the sublevels, 1
√

2
(|a, J = 1,M = +1〉 − |a, J = 1,M = −1〉),

is initially populated. In the absence of an electric field the transition must be between states of

134
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J=1+
a(1)

X J=0+
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X J=0+

a(1)

Figure 6.1: Pulsed dye laser excitation to the a(1) state. Left: In the absence of an electric field, the
energy levels are parity eigenstates. From the |X, J = 0〉 state only the odd parity levels of the Ω-
doublet are populated by a x̂-polarized laser pulse. Right: In an electric field, the |a, J = 1,M = ±1〉
sublevels are of mixed parity and all four sublevels are populated by the laser pulse.

opposite parity. Since the X states have parity (−1)J only the negative parity levels of the Ω-doublet

are populated (see Fig. 6.1) when exciting from |X, J = 0〉. In a magnetic field the initial state evolves

according to

|Ψ(T)〉 =
1
√

2

(
e−iδZT

|a, J = 1,M = +1,P = −1〉 − e−iδZT
|a, J = 1,M = +1,P = −1〉

)
, (6.1)

where δZ is the Zeeman shift. Parity selection allows decays only to the positive parity J=0 and J=2

levels of the ground state. The fluorescence intensity, S, for detection along the x̂ axis (see Fig. 5.7),

is given by

S(T) ∝
∑

J′′=0,2

∑
M′′

∑
ε=ŷ,ẑ

|〈X, J′′,M′′ | ε · r |Ψ(T)〉|2 , (6.2)

where ε is the polarization of the fluorescence. Decays to M = 0, which require ŷ polarization,

give rise to quantum beats (see Fig. 6.2. For example, with MJ′′ ≡
〈
X, J′′,M = 0

∣∣∣ y
∣∣∣ a, J = 1,M = 1

〉
=〈

X, J′′,M = 0
∣∣∣ y

∣∣∣ a, J = 1,M = −1
〉
,

Sqb(T) ∝
∑

J′′=0,2

MJ′′
∣∣∣e−iδZT

− eiδZT
∣∣∣2 ∝ 1 − cos(2δZT). (6.3)

Thus these decays give rise to fluorescence which is 100% modulated. The fluorscence from decays

to other sublevels does not exhibit quantum beats. Given the fraction of decays, c, to the M = 0
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Figure 6.2: Decay paths leading to quantum beats. In an electric field the |J = 1,M = ±1,P−〉 levels
are of mixed parity and can decay to the J = 0, 1, and 2 levels of the ground state. Only decays to
the M = 0 sublevels exhibit quantum beats. In the absence of an electric field decays to the J = 1
level of the ground state are forbidden.

sublevels the total fluorescence signal is then

S(T) = Ae−T/τ [1 − c cos(2δZT)] , (6.4)

where A is the total signal size and τ is the lifetime of the excited state. Borrowing from terminology

used in interferometry, we call c the contrast of the quantum beats.

The fraction of decays to the M = 0 sublevels is determined by the branching ratio for the decays

to the |X, J = 0〉 and |X, J = 2〉 states. Because the a → X transition is forbidden this value can not

be calculated. However, observations of the relative fluorescence size from several rotational lines

suggests that c = 50% (see discussion in [52] for more details). The observed value of c = 10 − 15%

is most likely due to background from excitation of nearby rotational lines by the dye laser.

In an electric field, the |a, J = 1,M = ±1〉 states are of mixed parity and additional decays are

allowed to the |X, J′′ = 1〉 levels (see Fig. 6.2). The only effect on the fluorescence is a slight reduction

in contrast due to the change in the fraction of decays to M = 0 sublevels.

Note that because there are no vibrational selection rules, decays generally go to several vibra-
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Figure 6.3: Fit of quantum beat data. The data points are the average fluorescence from four laser
shots. The red line is a fit to Eq. (6.5).

tional levels in the ground state. The relative branching ratio of the vibrational decays is given

by the Frank-Condon factor, which is a measure of the overlap of the radial wavefunctions. For

the |a, ν′ = 5〉 state about 50% of the molecules decay back to the |X, ν = 0〉 state with fluorescence

wavelength 548 nm and 50% go to the |X, ν = 1〉 level with wavelength 572 nm. In the past narrow

interference filters in front of the PMTs transmitted only one of these transitions. We have recently

switched to wider interference filters that capture both transitions (see Section 5.7).

6.2 Data fitting

The fluorescence data in the experiment is fit (see Fig. 6.3) to a slightly more complicated function

than Eq. (6.4),

Smodel(T) = αI(T)
[
1 + ce−T/Tb cos(ωbT + φ)

]
+ d. (6.5)

Here the beat shortening time Tb accounts for spin-decohering collisions, φ is the starting phase,

and d is the dc background due to blackbody radiation. The “scrambled” data, I(T) ≈ e−T/T1 , is
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essentially the fluorescence signal without quantum beats.1 T1 is the a(1) state lifetime in the cell,

which is determined by the natural lifetime, τa ≈ 80µs, and the collisional quenching rate. Optimal

sensitivity is obtained when these two rates are approximately equal, which gives T1 ≈ 40µs.

The data is fit in real-time with free parameters α, c, Tb, ωb, and φ using a Levenburg-Marquardt

algorithm written in C. The routine is compiled in a dynamic link library called by a Labview

program which allows the user to interactively see histogram or x-y plots of the fit parameters,

uncertainties, and various other experimental parameters. Because of electrical transients from the

pulsed YAG laser and short lived background fluorescence from a nearby level of the A state, the

data fit is usually started 10 − 15µs after the laser shot (see Fig. 6.3).

The uncertainty, δωb, in the fitted value of the beat frequency, ωb ≈ 2gµB + 2deEe f f , determines

our uncertainty in the EDM, δde ≈ δωb/(2Ee f f ). From the uncertainty principle we expect that

δω = 1/T where T is the measurement time. For shot noise limited detection the uncertainty is

improved by the signal-to-noise ratio, S/N = cN/
√

N. When α is in units of a counting rate, we then

estimate

δωb =
1

cT
√

N
=

1

cT
√
αT
. (6.6)

An analytic calculation using the fitting function Eq. (6.5), discussed in detail in Appendix D, gives

a shot-noise limited sensitivity of

δωb =

√
2

c
√
αT3

1

ξ
(

T1
Tb
, d
α

)
=

√
2

cT1
√

N
ξ
(

T1
Tb
, d
α

)
. (6.7)

The function ξ
(

T1
Tb
, d
α

)
=

√(
1 + 2 T1

Tb

)3
+ 8

(
1 + T1

Tb

)3 d
α is a correction factor which accounts for the beat

shortening time, Tb, and the dc background, d. The current optimal configuration (100 nm bandpass

interference filter and KG4 IR blocking glass) gives d/α ≈ 0.5, α = 3.5 × 1011photoelectrons/s,

c = 0.08, and T1 ≈ T2 ≈ 40 × 10−6 µs. Using Eq. (6.7) gives a single shot uncertainty estimate of

δω = 2π × 144 Hz. This agrees well with the actual uncertainty (determined from a histogram of

the fit frequencies) of 2π × 148 Hz. Note these values are for zero electric field without EDM state

preparation.

1See Appendix D.2 for a discussion of the various methods used to obtain this data.
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a, J=1

Figure 6.4: RF EDM state preparation. A ẑ-polarized laser pulse drives the molecules to the state
|a, J = 1,M = 0〉. An RF magnetic field selectively prepares either the higher or lower EDM state.

6.3 EDM state preparation

In an electric field the |a, J = 1,M = ±1〉 energy eigenstates are no longer parity eigenstates. Because

the laser line width is much broader than the Stark splitting, a x̂-polarized laser pulse populates all

four |a, J = 1,M = ±1〉 levels (see Fig. 6.1).

To selectively prepare either the higher or lower EDM state, the initial plan was to start with a

ẑ-polarized laser pulse and populate the |a, J = 1,M = 0,P−〉 level. Next, a RF magnetic field drives

a transition to either the higher or lower EDM state (see Fig. 6.4). Yong Jiang carried out extensive

experiments investigating this method [52]. The RF transitions were driven by a 1 kW RF pulse

amplifier connected to square Helmholtz coils mounted near the vapor cell using an impedance

matching network that could be switched for the two RF frequencies. It was found, in the reverse

process, that driving the RF transitions could effectively destroy the beat coherence if a x̂-polarized

laser pulse was used to initially populate all four of the M = ±1 sublevels. However, when the

RF transition was used to selectively populate one of the EDM states, measurements of the beat

contrast implied a population transfer of only 20%.

6.3.1 Microwave state preparation

Next we tried driving two step microwave Raman transitions using the higher J = 2 rotational level

as an intermediate state (see Fig. 6.5). Yong Jiang’s thesis [52] has an excellent discussion of the

details of our experimental investigations of the these transitions and his analytic calculations of

the transition dynamics. As this method was also eventually abandoned, I will only summarize a
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Figure 6.5: Microwave Raman EDM state preparation. Left: Two excitation pathways were in-
vestigated for preparing the EDM states. For the zx path, on top, a ẑ-polarized microwave pulse
drives the molecules to |J = 2,M = 0,P+〉. A second x̂-polarized pulse is tuned to the transition for
either the higher or lower EDM state. The xz path, on bottom, consists of a x̂-polarized microwave
pulse which drives the molecules to |J = 2,M = ±1,H〉 followed by a z-polarized pulse tuned to the
transition for the EDM states. Right: Excitation efficiencies of the individual steps were monitored
via quantum beats. The Fourier transform of the fluorescence data shows peaks at beat frequencies
for the J = 1 states, near 300 kHz, and the J = 2 states, near 100 kHz. The intermediate state in the
zx pathway exhibits no quantum beats and could not be monitored.
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few of the results.

At the 28.2 GHz frequency of the rotational transition, the Doppler width is ≈ 40 kHz. Thus the

various sublevels, which are separated by Stark shifts on the order of tens of megahertz, are easily

resolvable. The microwave pulses were generated using a homebuilt source described in Section 5.9

and coupled to the vapor cell via a Teflon tube attached to the quartz light pipe opposite to the laser

excitation side of the apparatus.

Excitation efficiencies of the microwave transitions were monitored via quantum beats in the

fluorescence. Because the Zeeman shift in the J = 2 state is one-third that of the J = 1 state the

quantum beats from the two states have unique frequencies. By taking the Fourier transform of

the fluorescence data and monitoring the amplitudes at the two beat frequencies, the populations

in superpositions of the M = ±1 levels in either rotational state could be inferred (see Fig. 6.5).

To determine efficiencies, the amplitudes were normalized to the beat amplitudes observed when

x̂-polarized laser excitation was used to populate the final state.

There were large inhomogeneities in the microwave power due to the divergence of the mi-

crowave beam once it left the light pipe. In addition, for x̂-polarized pulses boundary conditions

require the field to vanish at both electrodes. Because of these inhomogeneities, attempts to ob-

serve Rabi flopping were unsuccessful. Generally the excitation efficiency of a transition increased

with microwave pulse area to a maximum slightly above ≈ 50% and then decreased to a plateau

near ≈ 50%, consistent with the behavior of an inhomogeneously broadened transition. Using the

maximum available microwave power, we estimated average π pulse times of 100-300 ns for the

various transitions.

Adiabatic passage

The excitation efficiency of an inhomogeneously broadened transition can often be increased by

chirping the excitation frequency through the resonant frequency of the transition. In classical

magnetic resonance this technique, known as adiabatic passage, can be pictured as a slow flipping

of the effective magnetic field seen by the spins in the frame rotating at the RF frequency. If the

change in direction of the effective magnetic field is slow enough, the spins adiabatically follow the

field and flip.

There are two requirements for high efficiency in adiabatic passage (see discussions in [52, 86]).

The first requirement is that the excitation frequency must start and end far off resonance, where
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Figure 6.6: Population transfer by a frequency chirped microwave pulse. Appearance of quantum
beats indicate population transfer via a frequency chirped microwave pulse. The legend indicates
the relative microwave power for each of the curves. The microwave pulse width is fixed and the
chirp amplitude, ∆ f = ∆ω/2π, is varied. As the Rabi frequency is increased, via the microwave
power, the population transfer increases. Increasing the chirp amplitude increases the transfer up
to the point that the rapid frequency change becomes non-adiabatic.

far means the frequency chirp amplitude, ∆ω, is large compared to the resonant Rabi frequency, i.e.

∆ω � ΩR. Second, the effective field direction must be changed adiabatically, which translates to

the condition dω/dt � Ω2
R, where ω is the instantaneous microwave frequency. If, as a minimum

requirement, we assume ∆ω ≥ 2ΩR and dω/dt ≤ 1
2 Ω2

R, the pulse length, TP, and Rabi frequency

must obey the relation, ΩR ≥ 8/TP. Fig. 6.6 shows the unnormalized population transfer versus

frequency chirp amplitude for a fixed pulse width at several microwave powers. One can see that

as the Rabi frequency is increased, via the microwave power, the population transfer increases.

Increasing the chirp amplitude increases the transfer up to the point that the frequency change

becomes non-adiabatic.

Inhomogeneous microwave power in the cell leads to more stringent requirements. The horn

used to launch the microwaves has a 3 dB beam width of ≈ 20 degrees. Over the 8 cm length of

the cell, the intensity of the diverging microwave beam, which starts with a 2” diameter, drops by a

factor of 4. Thus ΩR, which is proportional to the field strength, drops by a factor of 2 across the cell.

For an average Rabi frequency, Ωave, the range of Rabi frequencies is approximately 0.6Ωave−1.2Ωave.

Assuming the same two conditions above are met for all Rabi frequencies leads to the condition
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Ωave ≥ 27/Tp. In general, the microwave pulses should be much faster than the quantum beat

period, which is typically 3µs, to avoid dephasing effects. A 1µs pulse length requires a Rabi

frequency, Ωave ≥ 27 MHz, which corresponds to a π-pulse time of 100 ns. Because we observed

π-pulse times in the range of 100-300 ns, it is likely that the adiabatic passage efficiency was limited

by the microwave power.

Results

The EDM state preparation scheme started once again with a ẑ-polarized laser pulse to initially

populate the |J = 1,M = 0,P−〉 sublevel. Next two microwave transitions were driven to populate

either the higher or lower EDM state. Two different paths were investigated. To reach the M = ±1

sublevels of the EDM states the two pulses had to have polarizations of x̂ and ẑ.

The first path, the xz sequence, used a x̂-polarized microwave pulse, which populates an in-

termediate state |J = 2,M = +1,H〉 − |J = 2,M = −1,H〉, followed by a ẑ-polarized microwave pulse

which populates either the higher or lower EDM state. The second path, the zx sequence, used a

ẑ-polarized microwave pulse, which populates the |J = 2,M = 0,H〉 level , followed by a x̂ pulse to

populate the higher or lower EDM state.

Pulse frequency, width, power, frequency chirp, and delays were all optimized by maximizing

beat frequency amplitudes when possible. For example, the pulse parameters of the first step of

the xz sequence were optimized by maximizing the size of the J = 2 beats. The second step was

optimized by initially populating a superposition of the |a, J = 2,M = ±1〉 levels with a x̂-polarized

laser pulse and optimizing the appearance of J = 1 beats.

The xz sequence had three disadvantages. Because quantum beats are produced in the inter-

mediate state, imperfect population transfer from J = 2 to J = 1 in the second step left residual

J = 2 quantum beats which could complicate data fitting and analysis. Second, the time evolution

of the phase of the intermediate state superposition was concerning. The timing of the second mi-

crowave pulse was critical and its duration had to be much smaller than the beat period to prevent

decoherence. Third, because the J = 2 Ω-doubling is three times larger than in the J = 1 state, the

|J = 2,M = ±1〉 sublevels are not fully polarized. The microwave pulse parameters therefore had to

be optimized for each electric field strength.

The zx sequence always had its disadvantages. Because neither the initial state or the interme-

diate state produce quantum beats, the first microwave pulse could not be directly optimized. The
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second step was optimized by using a ẑ-polarized laser pulse to populate the |J = 2,M = 0〉 level

and maximizing the appearance of J = 1 beats. This step had a small transition amplitude which

limited transfer efficiency.

Fig. 6.5 shows the optimized results for using both sequences to populate the higher EDM state.

Generally single step excitation efficiencies were ≥ 50% using frequency chirped pulses. Without

frequency chirping the efficiency dropped to≈ 30−40%. Two step sequences had typical efficiencies

of≥ 30%. Transfer efficiency to the lower EDM state was systematically lower than that of the upper

EDM state.

6.3.2 Microwave erasure

After trying two methods to coherently transfer the entire molecular population from the |J = 1,M = 0〉

state to the EDM states, we decided next to take the opposite tack. First, with an electric field ap-

plied, a x̂-polarized laser pulse populates all four |J = 1,M = ±1〉 sublevels. The initial state is a

coherent superposition of the four sublevels,

∣∣∣Ψ(x)
E

(T)
〉

=
1
√

2

(
e−iωST

∣∣∣Ψ(x)
EDM,n+

〉
− e+iωST

∣∣∣Ψ(x)
EDM,n−

〉)
, (6.8)

with ωs = δSt + ∆Ω1/2 and

∣∣∣Ψ(x)
EDM,n±

〉
=

1
√

2

(
e+iδZn± |J = 1,M = −1,n±〉 − e−iδZn± |J = 1,M = +1,n±〉

)
, (6.9)

are the n+ and n− EDM superpositions with an initial phase in the x̂ direction. However, because of

the electric field inhomogeneity in the vapor cell (δE/E ≈ 1%), the varying phase factors ωS, which

are dominated by the Stark shift, cause rapid decoherence. For a typical electric field of 50 V cm−1,

the two EDM states decohere relative to each other in a few microseconds. Thus by the time data

taking begins at 10-15µs after the laser pulse, the resulting state is an incoherent mixture of the

states
∣∣∣ΨEDM,n±

〉
.

However, for EDM data taking we typically would like to measure only one of the EDM states

each laser shot. To do this, the beat erasure method simply destroys the coherence of one of

the EDM states while leaving the other intact (see Fig. 6.7) . Immediately after the laser pulse

and before data-taking begins, a 10µs microwave pulse is applied resonant with the transition
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J=2+

J=2-

J=1-

J=1+

Figure 6.7: Microwave erasure. A x̂-polarized laser pulse populates all four M = ±1 sublevels of the
J = 1 state, which evolve to an incoherent mixture of the two EDM states. A long microwave pulse,
applied before data taking, is tuned to the transition |J = 1,M = ±1,H(L)〉 → |J = 2,M = ±2,H(L)〉
shown by the solid(dashed) arrows. Rabi flopping during many quantum beat periods erases the
coherence of the higher(lower) EDM state.
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Figure 6.8: Microwave erasure evidence. Left: The beat amplitude drops to one half showing
erasure of an EDM state as the microwave frequency is tuned across the |J = 1,M = ±1,H(L)〉 →
|J = 2,M = ±2,H(L)〉 transitions. In the absence of microwaves the beat amplitude was 1. Right:
With the microwave frequency at the point indicated on the left, the microwave power is increased.
From -10 to -15 dB a plateau in the beat frequency, at one half its initial value, shows the erasure of
one of the EDM states. Increasing the microwave power further broadens the transition until the
second EDM state is also erased.
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Figure 6.9: The apparent difference in the beat frequencies of the higher and lower EDM states is
shown versus microwave power. The procedure for optimizing the microwave erasure, shown in
Fig. 6.8, suggested erasure of one EDM state in the range of -20 to -14 dB. If the erasure was complete
at these powers, the beat frequency difference should plateau rather than continue to rise.

|J = 1,M = ±1,H(L)〉 → |J = 2,M = ±2,H(L)〉, which is chosen for its large Clebsch-Gordon coeffi-

cient. Rabi flopping between the J = 1 and J = 2 states for many beat periods destroys the coherence

of the selected EDM state. In addition, inhomogeneity of the microwave power causes different

molecules to Rabi flop a different number of times. Fig. 6.8 shows the typical procedure for deter-

mining the erasure frequency and power. First the microwave frequency is scanned and the center

of the desired transition is found. Next the microwave power is increased until the observed beat

amplitude plateaus at one half its original value, indicating erasure of one of the EDM states.

This method, which effectively gives 50% transfer efficiency, was used during the EDM run

described in the next section. However a more recent investigation has cast doubt on the claim

that the selected EDM state is completely erased. Fig. 6.9 shows the difference in the measured

beat frequencies, using erasure of either the upper or lower EDM state, versus microwave power.

At low powers no erasure occurs and the two measurements should be nearly identical. As the

power is increased we expect to see the difference plateau as one state is completely erased in

each measurement. Using the same optimization method of Fig. 6.8 showed a plateau in the beat

amplitude in the range of -14 to -20 dB. The beat frequency difference continues to increase at this

point. By the time the microwave power is -10 dB the beat amplitude was less than 25% of its
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original value, rendering the erasure method no more efficient than the microwave Raman transfer

method. We do note however that to first order the unerased beats may not cause systematic effects.

If the value of the fitted beat frequency is equal to a weighted average of the actual beat frequencies

and the weights are unchanged throughout experimental reversals, one can show that the unerased

beats only reduce the sensitvity.

6.3.3 Two frequency fitting

After the reliability of the microwave erasure method was put into question, we considered an

even more radical alternative for state preparation. With the realization that the inhomogeneity

of the electric field led to an incoherent mixture of the two EDM states after excitation with a

x̂-polarized laser pulse, we considered the possibility of simply doing nothing and measuring both

beat frequencies simultaneously.

This method was first considered after the discovery of the electric field dependence of the

magnetic g factor. Because the g factors for the higher and lower energy levels of the Ω-doublet

diverge, at high enough electric and magnetic fields the beat frequencies of the two EDM states

can be resolved, i.e. their frequency difference is greater than one over the a(1) state lifetime. The

first observations of this effect used a windowed Fourier transform of the fluorescence data. At

high fields the quantum beat frequency peak split into two peaks. However modeling showed that

for barely resolvable frequencies the measured separation between the two peaks in the Fourier

transform was an extremely poor measure of the actual frequency difference. Because of this

observation, we presumed the fitting of two frequencies would not work.

Extensive modeling in MATLAB of two frequency fitting of simulated fluorescence data with

shot noise has shown that not only is fitting accurate and robust, it actually improves the sensitivity

of an EDM measurement. Simulated data is fit to the function

S(T) = e−T/T1
[
1 + c1e−T/Tb cos(ω1t + φ) + c2e−T/Tb cos(ω2t + φ)

]
+ d. (6.10)

Because the initial phase of the quantum beats is set by the laser polarization, only one phase

parameter is needed. Fig. 6.10 shows the error in the two frequency fitting routine versus both

the blackbody-to-signal ratio and the beat frequency difference. Above a beat frequency difference

of ≈ 4 kHz the errors appear to be random. After varying all other fit parameters similarly, the
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Figure 6.10: Accuracy of two frequency fitting. Two frequency data is simulated with shot noise and
fit to Eq. (6.10). The color scale shows the difference between the fitted beat frequency difference
and the actual beat frequency difference used in the simulation. The differences are expressed in
units of the 1 − σ uncertainty in the frequency difference.

two frequency fit routine appears robust as long as the beat frequency difference is approximately

greater than 1/(2πT1), which is perhaps not too surprising. In addition, the uncertainty in the

fitted frequencies is consistently
√

2 times lower than an analogous fit with the usual one frequency

routine. We speculate that this increased senstivity is due to the fact that only one phase is needed

for both beat frequencies.

6.4 Reversals and rejection of systematics

The beat frequency from a given measurement during the EDM experiment is dependent on three

experimental parameters: the direction of the laboratory electric field, the direction of the laboratory

magnetic field, and whether the measurement was made in the higher or lower energy EDM state.

By combining measurements from various combinations of these parameters, limits can be placed

on systematic effects.

During an EDM measurement the molecules are fully polarized so the lower(higher) energy

state of the Ω-doublet always corresponds to the state polarized with(against) the electric field,
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n+(n−). For notational convenience below we define N = +1 for the n+ state and N = −1 for the n−

state. The laboratory electric and magnetic fields are defined to be positive when pointing upwards

along the laboratory z axis.

The energy of a given sublevel in the EDM state (see Chapter 3), including the electric field

dependence of g is

E(M,N,E,B) =
[
g + η |E| sgn(N)

]
MµB + deEintM sgn(N) sgn(E) − sgn(N)δSt(|E|). (6.11)

where g ≈ Gparallel/2 = 0.93 is the average g factor; η = 3.2 × 10−5 cm V−1 gives the g factor depen-

dence on E; Eint = −6.1 × 1024 Hz/(e · cm) is the effective internal electric field; and sgn(N) sgn(E) =

sgn(Eint) is the sign of the internal electric field in the laboratory frame. The measured beat frequen-

cies are the magnitudes of the difference in energy of each M = ±1 pair

ω(N,E,B) = |E(M = +1,N,E,B) − E(M = −1,N,E,B)|

=
∣∣∣2gµB + 2ηµ |E|B sgn(N) + 2deEint sgn(N) sgn(E)

∣∣∣
= 2gµ |B| + 2ηµ |E| |B| sgn(N) + 2deEint sgn(N) sgn(E) sgn(B). (6.12)

In the last line we have used the fact that the magnitude of the first term is always largest and∣∣∣x + y
∣∣∣ = |x| + sgn(x)

∣∣∣y∣∣∣ for |x| >
∣∣∣y∣∣∣. Written in this manner we can explicitly see the dependence of

the various terms on the experimental reversals. For example, the EDM term is odd, i.e. changes

sign, with all three reversals N,E, and B.

Eq. (6.11) gives the energy of the sublevels in the absence of experimental imperfections. Here

we consider three systematic effects: non-reversing components along the z axis of the magnetic

field, Bnr, and electric field, Enr, and an additional magnetic field, Bleak = αE, along the ẑ axis due to

leakage currents following a helical path between the electrodes. Using the replacement B→ B+Bnr,

the non-reversing magnetic field component leads to extra terms in Eq. (6.12),

δωBnr = 2gµBnr sgn(B) + 2ηµ |E|Bnr sgn(N) sgn(B). (6.13)

The replacement E → E + Enr affects only the second term of Eq. (6.12) and leads to the extra term

δωEnr = 2ηµEnr |B| sgn(E) sgn(N). (6.14)
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An additional term arises from the cross term of both non-reversing components,

δωEnr,Bnr = 2ηµEnrBnr sgn(N) sgn(E) sgn(B). (6.15)

The leakage currents contribute an additional magnetic field and give rise to the two terms

δωBleak = 2gµα |E| sgn(E) sgn(B) + 2ηµαE2 sgn(N) sgn(E) sgn(B). (6.16)

Next we consider combinations of all eight beat frequencies which are even or odd in each

reversal,

∆ω(PN,PE,PB) =
∑

sgn(N)

∑
sgn(E)

∑
sgn(B)

(PN)− sgn(N)(PE)− sgn(E)(PB)− sgn(B)ω
(

sgn(N) |N| , sgn(E) |E| , sgn(B) |B|
)
,

(6.17)

where PX is the parity of the X = N,E,B reversal, i.e +1 for an even combination and −1 for an odd

combination. For example, the EDM combination, which is odd in all three reversals, is explicitly

∆ω(−1,−1,−1) =
∑

(−1)(− sgn N−sgnE−sgn B)ω
(

sgn(N) |N| , sgn(E) |E| , sgn(B) |B|
)

= ω
(

+1,+|E| ,+|B|
)
− ω

(
−1,+|E| ,+|B|

)
− ω

(
+1,−|E| ,+|B|

)
+ ω

(
−1,−|E| ,+|B|

)
− ω

(
+1,+|E| ,−|B|

)
+ ω

(
−1,+|E| ,−|B|

)
+ ω

(
+1,−|E| ,−|B|

)
− ω

(
−1,−|E| ,−|B|

)
. (6.18)

One can quickly check that, for a given combination, only terms with the same parity as the

combination will appear. As an example, the N-odd, B-odd combination only has terms proportional

to sgn(N) sgn(B).

Table 6.1 summarizes the surviving terms for each of the combinations using Eq. (6.12) and

the terms from non-reversing magnetic and electric fields [Eq. (6.13),Eq. (6.14), and Eq. (6.15)],

and magnetic fields due to leakage currents [Eq. (6.16)]. Many of the combinations can be used

to directly place a limit on systematic effects. The suppression by the Ω-doublet reversal, i.e.

odd N combinations, is evident by their dependence on the g factor difference of the n± states,

∆g = 2η |E|. At a typical electric field of 50 V cm−1, ∆g = 3 × 10−3. Finally, one can see that in the
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Table 6.1: Beat frequency combinations and systematic effects

N E B Terms Derived quantity

+ + + 16gµ |B| |B|
+ + - 16gµBnr Bnr
+ - + 0
+ - - 16gµBleak Bleak
- + + 8∆gµ |B| |E|

- + - 8∆gµBnr
- - + 16ηEnrµ |B| Enr
- - - 16deEint + 16ηEnrµBnr + 8∆gµBleak de

EDM combination,

∆ωEDM = ∆ω(−1,−1,−1) = 16deEint + 16ηEnrµBnr + 8∆gµBleak, (6.19)

the terms from systematic effects are the product of two or three small numbers.

To estimate the size of the systematic terms we assume that the magnetic field can be reversed

to a part per thousand. With the current sensitivity of the experiment a typical magnetic field,

B = 100 mG, can be measured to better than a part per thousand in a single shot. We estimate the

electric field reversal atE = 50 V cm−1 to be accurate to 10−4. Yong Jiang [52] has built and extensively

tested a high voltage source for the electric field that can reverse to better than 2.5 × 10−5. With

these assumptions the second term, 16ηEnrµBnr, after dividing by the eight measurements, gives a

shift per measurement of ≈ 50µHz or a false EDM of 4 × 10−30 e·cm. For the third term, a typical

leakage current of 10µA in a 8 cm loop around the cell body gives a magnetic field, Bleak = 200 nG.

This leads to a shift per measurement of ∆gµBleak = 900µHz or a false EDM of 7 × 10−29 e·cm.

More important is the fact that we do not have to rely on these estimates of the systematic effects

in the EDM combination. Limits can be directly placed on each of the factors, Bleak,Enr, and Bnr,

using the other beat frequency combinations. Because these factors are suppressed by two to three

orders of magnitude in the EDM combination, as the sensitivity of the experiment is improved, non-zero

values for any of these factors will be well measured before they can lead to a systematic effect.
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Figure 6.11: Order of reversals during EDM data taking. Every other laser shot the microwave
erasure frequency was switched to change between the n+ and n− EDM states. 16 shots of each state
were averaged and fit. This was repeated 16 times for a total time of about 5 s. This procedure was
repeated 1440 times with the electric field reversed each iteration. This constitutes a single dataset.
Next, the magnetic field was reversed and the magnetic shields degaussed. The entire process then
repeated.

6.5 EDM data and results

In 2008, we took 43 hours of EDM data to verify that systematic errors in the experiment were under

control. At that time the sensitivity was significantly lower than it is today. The molecules were

excited on the 572 nm transition, |X, ν = 1〉 → |a, ν′ = 5〉, and detected on the transition |a, ν′ = 5〉 →

|X, ν = 1〉 at 548 nm. Two narrowband interference filters centered at 554 nm were used along with

a wideband IF filter and KG4 IR blocking glass. The blackbody size was significantly larger than

the signal size, as we were still using foil heat shields on the oven. Two magnetic shields were

installed.

The data taking procedure was as follows: Every other laser shot the microwave erasure fre-

quency was switched to change between the n+ and n− EDM states. After 16 shots of each state the

data was averaged and fit. This process was repeated 16 times for a total time of about 5 s. Next the

electric field direction was switched. The electrode voltage is generated by a high voltage amplifier

connected to a programmable precision voltage standard (EDC 501J). Software ensured that the

voltage was smoothly ramped over a few tens of milliseconds to prevent significant currents, due

to the capacitance of the cables, which could magnetize the magnetic shields. After the electric

field direction was switched, data taking is paused for 100 ms to let any charging currents subside

(no significant currents have been observed). This process was repeated 1440 times to give one

dataset of about 2 hours. A gaussian is fit to the histograms of each of the four possible even or
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Figure 6.12: Histogram of the E-odd, N-odd combination for a dataset in the 2008 EDM run. In
general, the Gaussian fits to the histograms were very good, with reduced χ-squared values close
to 1.

odd combinations of the E and N reversals (see Fig. 6.12). The combinations odd in the electric

field are subtracted pairwise in the order they were recorded. The central value and uncertainty are

recorded for each fit parameter. After this, the magnetic field direction is reversed and the shields

are degaussed. The process then starts all over.

Fig. 6.13 shows the final result from the 2008 EDM run with each point representing a pairwise

subtraction of the E-odd, N-odd combination for datasets with oppositely directed magnetic fields.

Averaging the values from all datasets with the same magnetic field first, and then subtracting did

not change the result significantly. The 1-σ statistical EDM uncertainty of 2 × 10−26 e· cm is over an

order of magnitude worse than the Berkeley limit. In addition, we estimate that imperfections in the

microwave erasure method reduces the actual EDM sensitivity by a factor of 25%. However, using

the other beat frequency combinations we placed limits on systematic effects: Enr < 90 mV cm−1,

Bnr/B < 1%, and Bleak < 400 nG, all at 95% confidence level. In the EDM combination this leads to

a limit on a false EDM of < 9 × 10−28e·cm (95% c.l.). Combined with the statistical uncertainty, the

final result is δde = (−19 ± 25 ± 0.5) × 10−27e·cm.
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Figure 6.13: EDM results from the 2008 data run.



Chapter 7

Microwave absorption

In this chapter, I discuss a proposed second generation of the PbO experiment based on detection via

microwave absorption. This proposal requires a completely new apparatus with several technically

challenging requirements. The predicted statistical sensitivity is orders of magnitude better than

that of the current apparatus. As a proof-of-principle we measured microwave absorption in

the excited a(1) state with the current apparatus. In the end it was decided that the ThO beam

experiment [30], which is technically easier and predicted to have an even higher sensitivity, was

a better focus of manpower and resources. However, the microwave absorption techniques turned

out to be useful for characterizing the PbO vapor pressure and pulsed laser excitation efficiency.

Both values were measured and found to be much smaller than originally expected.

7.1 Basic principle

The main idea of the second generation experiment is to replace the current detection method

of fluorescence light collection with an absorption measurement. Instead of passively observing

interference between spontaneous decay paths that lead to a common ground state, interference

would be seen as the quantum beat states were driven to a common excited state (see Fig. 7.1).

Fluorescence detection is typically inefficient for several reasons. First, it requires a large collec-

tion solid angle. In the current apparatus the walls of the vapor cell were designed to be as thin as

was structurally possible. Our collection solid angle is limited only by the size of the cell windows.

Maintaining the same solid angle is difficult as the size of the vapor cell increases. Even with

155
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Figure 7.1: Spontaneous optical decay versus microwave absorption detection schemes. (a) Quan-
tum beats are seen in fluorescence from the interference of two spontaneous decay pathways to a
common ground state. (b) Similar beats occur in microwave absorption due to the interference of
two excitation pathways to a common final state.

efficient light collection there are many other inefficiencies downstream in the detection process.

Every surface the light passes through (e.g. lightpipes, cell windows, filters, etc.) contribute Fresnel

reflection losses. The high temperature of our apparatus precludes the use of anti-reflection coatings

on many of the surfaces. A spectral filter is required to eliminate background from blackbody radi-

ation emanating from the hot surfaces of the vapor cell (and possibly the heating foils themselves).

Finally the detector itself is usually inefficient. We use the best available photomultiplier tubes

(PMT) which have a quantum efficiency of only 15%. In the end, we collect light from less than 10−3

of the molecules in the EDM state (see [81] for a complete discussion of detection choices).

Absorption measurements eliminate many of these difficulties. Detection solid angle is not an

issue since the absorption beam is fully collected by the detector. Increasing the cell length or using

a resonant cavity increases the efficiency to which the molecules are used. Backgrounds are still a

concern, but narrowband filters can be used since detection occurs at a single wavelength. Finally

the small solid angle used allows one to focus the absorption beam onto a smaller, more efficient

detector.

Originally it was proposed to use laser absorption in the second generation PbO experiment
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to increase detection efficiency. A search was carried out for states with strong coupling to a state

of PbO. No states were found with a coupling sufficient for an absorption measurement [91]. The

Thomas-Reiche-Kuhn sum rule of oscillator strengths and known transitions suggests such a state

much exist [76]. It is possible that this unknown state is simply out of the reach of convenient laser

wavelengths.

While exploring the possibility of using microwave Raman transitions for state preparation (see

Section 6.3.1), it was realized that the microwave coupling between rotational lines is very strong.

In fact, as we will show in Section 7.4, absorption can be seen in the current vapor cell. In theory, a

longer cell with a microwave cavity around it could give absorption signals on the order of a few

percent and an increase in signal-to-noise by orders of magnitude.

7.2 Signal to Noise

In this section we go through a detailed derivation of the signal-to-noise ratio for some common

detection schemes used in microwave absorption measurements. We start with a few formal

mathematical definitions and then delve into the details of detection with a square law (“power”)

detector for both constant and amplitude modulated signals with background noise. We consider

the relative importance of thermal and shot noise. In retrospect, calculation of the theoretical signal

to noise can be simply estimated. However, a couple differences between microwave and optical

absorption experiments made our initial attempts confusing. First was a difference in terminology.

Most of the literature on microwave technology is in engineering books. Differences in the definition

of signal-to-noise between physicists and engineers made it unclear whether we cared about the

signal-to-noise of the output voltage or power on our detector. Second, being used to optical

experiments, we did not realize that the dominant source of noise in microwave measurements

comes from thermal noise (or more specifically a cross term between the thermal noise and signal)

rather than shot noise. To verify that our calculations were correct we carried out an in-depth

analysis borrowing heavily from Chapter 12 of Davenport & Root [121].
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7.2.1 Definitions

First let us give a few definitions and notations. The statistical average of a random process is

defined and denoted by

E
[
y(xt)

]
≡

∫
∞

−∞

y(xt)p(xt) dxt (7.1)

where xt is a random variable at time t and p(xt) is the probability density of xt. The autocorrelation

function is denoted by

Ry(t1, t2) ≡ E(yt1 yt2 ). (7.2)

If yt is stationary (i.e. the probability density is independent of t) then we can define τ = t1 − t2 and

Ry(τ) ≡ Ry(t1, t2). (7.3)

From the Wiener-Khinchin theorem the power spectral density (PSD) is given by the Fourier Trans-

form of the autocorrelation function

Sy( f ) ≡
∫
∞

−∞

Ry(τ)e−i2π fτ dτ. (7.4)

The units of Sy are [y]2/Hz. Note that we will be using the double sideband (DSB) power spectral

density throughout this chapter unless otherwise noted. Also note that for a random variable with

zero mean the variance is given by

Ry(0) = E
(
y2

)
= σ2

y =

∫
∞

−∞

Sy( f ) d f . (7.5)

7.2.2 Square Law Detector

General signal with noise

Now we consider a square law detector, that is a detector with a response y(t) to a signal x(t) given

by

y(t) = x2(t). (7.6)



CHAPTER 7. MICROWAVE ABSORPTION 159

To find the autocorrelation we use the relation (see 8-121 in [121])

E(x1x2x3x4) = E(x1x2)E(x3x4) + E(x1x3)E(x2x4) + E(x1x4)E(x2x3). (7.7)

Thus for the output we have

E(y1y2) = E
(
x2

1x2
2

)
= E

(
x2

1

)
E
(
x2

2

)
+ 2[E(x1x2)]2 . (7.8)

The autocorrelation of the output is then

Ry(τ) = E(y1y2) = σ4
x + 2R2

x(τ). (7.9)

Using Eq. (7.4) the PSD of the output is

Sy( f ) = σ4
xδ( f ) + 2

∫
∞

−∞

R2
x(τ)e−i2π fτ dτ

= σ4
xδ( f ) + 2

∫
∞

−∞

Sx( f ′)ei2π f ′τ d f ′
∫
∞

−∞

Rx(τ)e−i2π fτ dτ

= σ4
xδ( f ) + 2

∫
∞

−∞

Sx( f ′)Sx( f − f ′) d f ′, (7.10)

i.e. a DC power level of σ4
x and a PSD given by the convolution of Sx with itself.

Now let x(t) = s(t) + n(t) where s(t) and n(t) represent the signal and noise, respectively. For

simplicity assume both have zero mean and are statistically independent random processes. The

autocorrelation of the output is

Ry(t1, t2) = E
[
(s1 + n1)2 (s2 + n2)2

]
= E

(
s2

1s2
2

)
+ 4E(s1s2)E(n1n2) + E

(
s2

1

)
E
(
n2

2

)
+ E

(
s2

1

)
E
(
n2

2

)
+ E

(
n2

1n2
2

)
, (7.11)

where we used the fact that s and n are statistically independent and have zero means. This gives

Ry(τ) = Rs2 (τ) + 4Rs(τ)Rn(τ) + 2σ2
sσ

2
n + Rn2 (τ), (7.12)

using the definition Ra2 (τ) ≡ E
[
a2

1a2
2

]
. Thus the autocorrelation of the output contains three types of
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terms

Ry(τ) = Rs×s(τ) + Rs×n(τ) + Rn×n(τ). (7.13)

Each term results from the interaction of

signal with signal Rs×s(τ) ≡ Rs2 (τ), (7.14a)

signal with noise Rs×n(τ) ≡ 4Rs(τ)Rn(τ) + 2σ2
sσ

2
n, (7.14b)

noise with noise Rn×n(τ) ≡ Rn2 (τ). (7.14c)

The output PSD can be separated similarly into three parts by taking the Fourier transform of the

autocorrelations

Sy( f ) = Ss×s( f ) + Ss×n( f ) + Sn×n( f ). (7.15)

Constant sine wave with noise

Now consider the case of a sine wave signal with Gaussian noise

x(t) = s(t) + n(t) =
√

2V cos(ωct + θ) + n(t), (7.16)

where V is the constant RMS amplitude, and θ is a random variable uniformly distributed over

[0, 2π]. Note, as we will see below, θ is just a tool to help with taking expectation values; it is not

the noise itself.

First the autocorrelation and the PSD of the signal are

Rs(t1, t2) = 2V2E[cos(ωct1 + θ) cos(ωct2 + θ)]

= V2 cos[ωc(t1 − t2)] + V2 1
2π

∫ 2π

0
cos[ωc(t1 + t2) + 2θ] dθ

= V2 cosωcτ (7.17)

⇒ Ss( f ) =
V2

2
[
δ( f − fc) + δ( f + fc)

]
. (7.18)
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Half of the power is at fc and half is at − fc as expected. Then from Eq. (7.14b) we have

Rs×n(τ) = 4V2 cos(ωcτ)Rn(τ) + 2V2σ2
n (7.19)

⇒ Ss×n( f ) = 2V2[Sn( f − fc) + Sn( f + fc)
]
+ 2V2σ2

nδ( f ). (7.20)

Using Eq. (7.14a) the signal with signal autocorrelation and PSD are

Rs×s(τ) = 4V4E
[
cos2(ωct1 + θ) cos2(ωct2 + θ)

]
= V4 +

V4

2
cos(2ωcτ) (7.21)

⇒ Ss×s( f ) = V4δ( f ) +
V4

4
[
δ( f − 2 fc) + δ( f + 2 fc)

]
. (7.22)

Finally, from Eq. (7.10), the noise with noise PSD is

Sn×n = σ4
nδ( f ) + 2

∫
∞

−∞

Sn( f ′)Sn( f − f ′) d f ′. (7.23)

The above results hold for any noise source. Now let Sn be a constant A over an input bandwidth

Bin centered on fc (see Fig. 7.2b). In this case, from Eq. (7.20) and Eq. (7.23), we have

Ss×n( f ) = 4V2ABinδ( f ) +


4V2A if − Bin/2 < f < Bin/2,

2V2A if − Bin/2 < | f | − 2 fc < Bin/2,

0 otherwise,

(7.24)

Sn×n( f ) = (2ABin)2δ( f ) +


4A2(Bin − | f |) if − Bin < f < Bin,

2A2(Bin −
∣∣∣| f | − 2 fc

∣∣∣) if − Bin < | f | − 2 fc < Bin,

0 otherwise,

(7.25)

where we have used

σ2
n =

∫
∞

−∞

Sn d f = 2ABin. (7.26)

Combining Eq. (7.22), Eq. (7.24), and Eq. (7.25) and dropping high frequency terms which can be
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filtered at the output we have

Sy( f ) =
(
V2 + 2ABin

)2
δ( f ) +


4V2A + 4A2(Bin − | f |) if 0 < | f | ≤ Bin/2,

4A2(Bin − | f |) if Bin/2 < | f | ≤ Bin,

0 otherwise.

(7.27)

Note that this is the PSD of the output voltage, i.e., it has units power per hertz. We are interested

in the output voltage since it is proportional to input power. The input signal power is Ps ≡ V2 and

the input noise power is Pn,in ≡ 2ABin. Thus the output DC voltage of V2 + 2ABin is simply the sum

of the input signal and noise powers as we would expect for a “power” detector.

We can interpret the output of the square law detector simply as the result of mixing input

frequencies. The quadratic output multiplies two sine waves which is equivalent to summation of

two sine waves at the sum and difference of the two frequencies. In the s× s output we see just this:

a DC term and a term at twice the input frequency. Similarly the n× n output consists of a DC term

from the mixing of equal noise input frequencies and a convolution that is simply the summation

of each pair of input noise frequencies at a given difference in frequency. This gives some intuition

to the shape of the output (see Fig. 7.2). For example, the fact that convolution term in the n × n

output is largest at fout = 0 and drops linearly to zero at fout = ±Bin is simply because there are fewer

and fewer “pairs” of input frequencies, i.e. those at fc − fout/2 and fc + fout/2, that can mix to give

an output at fout.

Since we detect near DC and the output bandwidth of our detector is much smaller than the

input bandwidth we can essentially use the PSD at f = 0 over some small output bandwidth Bout

(making sure to include a factor of 2 for positive and negative f ). The contribution to the output

noise power from Ss×n is then

σ2
s×n = 8V2ABout = 4PsPn,out, (7.28)

and the contribution from Sn×n is

σ2
n×n = 8A2BinBout = 2Pn,inPn,out, (7.29)

where we have defined the output noise power Pn,out ≡ 2ABout. To be more precise Pn,out is the

power from the input noise PSD over the output bandwidth. Note that in some engineering texts
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Figure 7.2: Square law detector PSD functions for a sinusoidal input with noise. a) Input signal at
fc and constant noise over a bandwidth Bin. b) Signal × signal term on the output. c) Signal × noise
term on the output. d) Total output of b), c), and a noise × noise term.
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this can be alternatively expressed as

σn×n = 2ABeq (7.30)

with Beq =
√

2BinBout called the equivalent noise bandwidth.

Since ( S
N

)
in

=
Ps

Pn,in
(7.31)

we see that
σ2

s×n

σ2
n×n

=
4PsPn,out

2Pn,inPn,out
= 2

Ps

Pn,in
= 2

( S
N

)
in
. (7.32)

Thus the output noise contribution from s × n dominates as (S/N)in increases.

The output signal-to-noise depends only on the input signal-to-noise and the input and output

bandwidths. ( S
N

)
out

=
P2

s

4PsPn,out + 2Pn,inPn,out
=

1
2

( S
N

)
in

(S/N)in

1 + 2(S/N)in

Bin

Bout
(7.33)

For (S/N)in >> 1 ( S
N

)
out
≈

1
4

( S
N

)
in

Bin

Bout
(7.34)

Note here we are following the engineering convention of always using ratios of powers for signal-

to-noise. For a square law detector the power of the output is proportional to the input power

squared. In our experiment, the uncertainty comes from fitting a curve to the output voltage so we

must use the signal-to-noise on the output voltage. On the output voltage

( S
N

)
out,V
≈

1
2

√( S
N

)
in

Bin

Bout
=

1
2

√
Ps

Pn,out
(7.35)

Modulated sine wave plus noise

Now consider a modulated sine wave plus Gaussian noise

x(t) =
√

2v(t) cos(ωct + θ) + n(t). (7.36)
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Assuming v is statistically independent of θ the autocorrelation of the signal is

Rs(τ) = 2E(vtvt+τ)E{cos(ωct + θ) cos[ωc(t + τ) + θ]}

= Rv(τ) cos(ωcτ) (7.37)

⇒ Ss( f ) =
1
2
[
Sv( f − fc) + Sv( f + fc)

]
. (7.38)

The s × n autocorrelation and PSD are

Rs×n(τ) = 4Rs(τ)Rn(τ) + 2E
(
s2
)
σ2

n

= 4Rv(τ)Rn(τ) cosωcτ + 2Rv(0)σ2
n (7.39)

⇒ Ss×n( f ) = 4
∫
∞

−∞

Rv(τ)Rn(τ) cos 2π fce−i2π fcτ dτ + 2E
(
v2

)
σ2

nδ( f )

= 2
∫
∞

−∞

Sn( f ′)
[
Sv( f − fc − f ′) + Sv( f + fc − f ′)

]
d f ′ + 2E

(
v2

)
σ2

nδ( f ). (7.40)

Compared to Eq. (7.20), Ss×n now has the convolution of Sv with Sn instead of a constant V. The

s × s autocorrelation and PSD are

Rs×s(τ) = 4E
(
v2

t v2
t+τ

)
E
{
cos2(ωct + θ) cos2[ωc(t + τ) + θ]

}
= Rv2 (τ) +

1
2

Rv2 (τ) cos 2ωcτ (7.41)

⇒ Ss×s( f ) = Sv2 ( f ) +
1
4
[
Sv2 ( f − 2 fc) + Sv2 ( f + 2 fc)

]
. (7.42)

Compared to Eq. (7.22), Ss×s now has SV2 instead of δ-functions. The n× n autocorrelation and PSD

are the same as the unmodulated case above.

Amplitude modulation

Now consider the case of AM modulation. Since the quantum beat signal in the actual experiment

is an AM modulated signal this case is very relevant. To first order we can treat the incoming

amplitude as

s(t) =
√

2v(t) cos(ωct + θ) =
√

2V(1 + m cosωmt) cos(ωct + θ). (7.43)
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The PSD of the amplitude v(t) is

Sv( f ) = V2

{
δ( f ) +

m2

4
[
δ( f − fm) + δ( f + fm)

]}
. (7.44)

Using Eq. (7.40) the signal × noise PSD is

Ss×n( f ) = 4V2

(
1 +

m2

2

)
ABinδ( f ) +


4V2

(
1 + m2

2

)
A if − Bin/2 < f < Bin/2,

2V2
(
1 + m2

2

)
A if − Bin/2 < | f | − 2 fc < Bin/2,

0 otherwise.

(7.45)

This is the same as the unmodulated case Eq. (7.24) with an additional O
(
m2

)
term from the power

in the sidebands. Dropping the higher order term the noise variance in a bandwidth Bout near DC

is the same as in Eq. (7.28)

σ2
s×n = 8V2ABout = 4PsPn,out. (7.46)

To find the output signal we first compute the square of the amplitude v(t) to O(m)

v2(t) = V2(1 + 2m cosωmt) (7.47)

which has a PSD of

Sv2 ( f ) = V4
{
δ( f ) + m2[δ( f − fm) + δ( f + fm)

]}
. (7.48)

Using Eq. (7.42) the output power at fm is

P fm = 2m2V4 = 2(mPs)2. (7.49)

Using Eq. (7.49) and Eq. (7.46) the signal to noise is

( S
N

)
V fm

=

√
P fm

σ2
s×n

=
m
√

2

√
Ps

Pn,out
. (7.50)



CHAPTER 7. MICROWAVE ABSORPTION 167

Compared to the unmodulated case Eq. (7.35) there is an additional factor of
√

2m. The absorption

fraction x is equal to the peak to peak modulation of the power, 4m. In terms of absorption fraction x,

( S
N

)
V fm

=
x

4
√

2

√
Ps

Pth

Bin

Bout
. (7.51)

Actual noise sources

Now we are in a position to compare the actual experimental noise sources.

Shot noise, due to the discrete nature of photons, is on the input power which makes the above

analysis problematic. To a first approximation we can use the usual derivation of shot noise and

assume the PSD of the output voltage reproduces the PSD due to shot noise. The signal power is

Ps = h f Ṅ =
h f N
∆t

= 2h f NBout, (7.52)

where Ṅ = N/∆t is the photon rate. With a sampling time ∆t (and therefore a bandwidth Bout =

1/2∆t) we observe N photons on average and we can find the variance of the output from

Sshot =
σ2

Ps

2Bout
=

1
2Bout

(2h f BoutσN)2 = 2(h f )2Boutσ
2
N = 2(h f )2BoutN = h f Ps. (7.53)

This is analogous to the well-known Schottky formula [122] for the SSB PSD of shot noise on

electrical current, Si = 2ei.

Thermal noise (Johnson noise) is independent of frequency so we can use the analysis above

with the substitution A = 1
2 kT (for DSB PSD).

Summarizing the three major noise sources

Thermal noise [see Eq. (7.29)] σth =
√

2Pth,inPth,out (7.54a)

Signal thermal cross term [see Eq. (7.28)] σs×th = 2
√

PsPth,out (7.54b)

Shot noise [see Eq. (7.53)] σshot =
√

2h f PsBout (7.54c)

where Ps = V2 and Pth,in(out) = kTBin(out). One can see that the cross term will dominate the thermal

noise term as long as the signal power is larger than the input thermal noise power. Even without
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filtering on the input this will always be the case since

Pth,in = kTBin = (1.4 × 10−23 J K−1)(300 K)(1010 Hz) ≈ 40 pW (7.55)

and Ps is typically on the order of microwatts. Comparing the cross term Eq. (7.54b) with the shot

noise term Eq. (7.54c)

σs×th

σshot
=

2
√

PsPth,out√
2h f PsBout

=

√
2kT
h f

=

√
2(1.4 × 10−23 J K−1)(300 K)

(6.6 × 10−34 J s)(30 × 109 Hz)
≈ 20 (7.56)

shows that thermal cross term dominates. The temperature T used here is a typical noise tempera-

ture of the amplification electronics (see discussion in Section 7.3).

This result depends only on the detection frequency and is independent of the power. One

could alternatively derive this by starting from the Bose-Einstein statistics of photons and deriving

the mean squared fluctuation in photon number. There are in fact two terms: one due to quantum

or particle fluctuations and the other due to wave interference or thermal fluctuations. Optical

experiments (h f � kT) typically ignore the thermal fluctuation term while RF experiments (h f �

kT) ignore the particle term (see Chapter 2 in [123] for a detailed discussion).

7.2.3 Homodyne detection

In this section we consider the alternative of homodyne detection with a mixer. The output from

the mixer is given by

y(t) = xRF(t)xLO(t) (7.57)

where

xRF(t) = sRF(t) + nRF(t) (7.58a)

xLO(t) = sLO(t) + nLO(t) (7.58b)

sRF(t) =
√

2VRF cosωct (7.58c)

sLO(t) =
√

2VLO cos(ωct + θ). (7.58d)
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We define PRF ≡ V2
RF, PLO ≡ V2

LO, and Pth,RF and Pth,LO to be the total thermal noise over the input

bandwidth on the RF or LO port, respectively, of the mixer. These bandwidths are determined only

by the mixer or waveguide if no filters or amplifiers are used before the mixer. Substituting into

Eq. (7.57)

y(t) = 2[VRFVLO cosωct cos(ωct + θ) + nRF(t)VLO cos(ωct + θ)

+ nLO(t)VRF cosωct + nRF(t)nLO(t)] (7.59)

First consider the term analogous to the signal × signal term for the square law detector

2VRFVLO cosωct cos(ωct + θ) = VRFVLO[cosθ + cos(2ωct + θ)]. (7.60)

The expectation value of the second term is zero and with proper phase control we can set θ = 0 so

Vs×s =
√

PRFPLO. (7.61)

Now each of the cross terms have the same form as in the square law detector case so, using

Eq. (7.28),

σs×n =
√

2(PRFPth,LO + PLOPth,RF). (7.62)

The thermal noise terms are usually comparable, while PLO � PRF which gives

σs×n =
√

2PLOPth,out. (7.63)

This leads to a signal to noise on the output of

( S
N

)
Vout

=

√
PRFPLO

2PLOPth,out
=

√
PRF

2Pth,out
. (7.64)

Compared to square law detection Eq. (7.35) we gain a factor of
√

2 from one of the signal × noise

terms being suppressed by the low RF power. One can quickly see that the same analysis holds for

an amplitude modulated RF signal, since the output term at the modulation frequency comes from

multiplying the AM sidebands by cosωct, which in turn comes from the local oscillator.
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7.3 Microwave absorption EDM measurement

In this section we calculate the theoretical sensitivity of our experiment to an electron EDM using

microwave absorption with actual parameter values. To use the signal-to-noise ratio formulas

calculated above, we first need to determine the expected absorption fraction and the optimal

microwave absorption beam power.

7.3.1 Expected absorption fraction

To calculate the absorption fraction we first need to calculate the dipole transition matrix element.

Using Table 3.2 and Table 3.3, the matrix element for the EDM transition is

MEDM =
1
√

2
〈J = 2,m = 0, e| − µx (|J = 1,M = −1,n−〉 + |J = 1,M = +1,n−〉) =

µa

2
√

10
, (7.65)

where µx = 1
√

2
(−µ−1 +µ+1). This gives an absorption cross-section of (see discussion in Appendix B)

σabs =
8πω

c
1
γ~

M2
EDM = 1.9 × 10−12 cm2, (7.66)

where ω = 2π(28.2 GHz) is the transition frequency and γ = 1
τ = 1

50µs = 2π(3.2 kHz) is the natural

linewidth. Doppler broadening reduces the cross section to (see 3.155 and 3.150 in [86])

σD = 0.89
γ

ΓD
σabs = 2 × 10−13 cm2, (7.67)

where

ΓD =
ω
c

√
2kT
M

= 2π(26.6 kHz) (7.68)

at T = 1000 K. The inhomogeneous linewidth, ΓE, due to the electric field further reduces the

cross-section by ΓD/ΓE. To fully polarize the molecules we apply a field of 50 V cm−1 which causes

a Stark shift of ≈ 40 MHz. An inhomogeneity of χE reduces the cross-section by

ΓD,FWHM

40 MHz · χE
=

2
√

ln 2 · 26.6 kHz
40 MHz · χE

≈
10−3

χE
. (7.69)

For the current vapor cell χE ≈ 0.01, therefore σ = 2 × 10−14 cm2.
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The absorption fraction is given by

x = nσL (7.70)

For the current vapor cell, with L = 5 cm and n = 1 × 1010 cm−3, we have

x = f · 1 × 1010 cm−3
· 2 × 10−14 cm2

· 5 cm = f · 10−3, (7.71)

where f is the efficiency of the |X, ν = 0, J = 0〉 → |a, ν = 5, J = 1〉 excitation process. In general

x = f
10−5

χE

( L
5 cm

)
. (7.72)

This is valid down to an electric field inhomogeneity of χE = 10−3 at which point the line broadening

is comparable to the Doppler width.

7.3.2 Optimal absorption beam power

The signal-to-noise increases as the microwave power increases. However, at a certain power

population transfer begins to limit the absorption signal. To avoid this we assume the power is

small enough that it drives less than one-tenth of a π pulse during the state lifetime

1
~
µedmEτ <

π
10
. (7.73)

This gives an allowed flux of S = 2 × 10−8 W cm−2. For the current cell a circular 2 inch diameter

microwave beam gives

P = π(2.54 cm)2S = 0.4µW. (7.74)

The microwave power can be increased if the linewidth is broadened to match any inhomogeneous

broadening of the absorption line. Electric field broadening increases the maximum power by

ΓE
γ = 400

3.2 ≈ 125 or

P ≈ 50µW for the current cell.

For the best case, when ΓE < ΓD we can use ΓD
γ = 26.6

3.2 = 8.3 times more power or

P ≈ 3µW for a Doppler limited linewidth.
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7.3.3 Signal-to-noise ratio using the current apparatus

From the full analysis of an amplitude modulated absorption signal with a modulation of x on the

power detected by a square-law detector the signal-to-noise is

( S
N

)
sq.law

=
x
4

√
P

kTe f f Bout
. (7.75)

Homodyne detection was a factor of
√

2 better

( S
N

)
homodyne

=
x
2

√
P

2kTe f f Bout
. (7.76)

Te f f is the effective temperature of the microwave receiver. There are two main contributions to

the temperature. First is the brightness temperature in the field of view of the detection antenna.

In our experiment the quartz lightpipes act as waveguides between the transmitting and receiving

horns. Thus, without some trick, such as cooling the transmitting horn or possibly coating it with

low emissivity paint, the receiving antenna mostly “sees” the room temperature surface of the

transmitting horn. There are also thermal noise contributions from any hot surfaces in the field of

view of the antenna and from the hot PbO gas itself. The gas contributes an effective temperature

given by the physical temperature times the absorption. With small absorption, it was verified

experimentally that the detected noise power was significantly below that of a 1000K blackbody.

The second contribution to the effective noise temperature is the electronic noise of the detection

amplifier. The gain of the amplifier makes noise from electronic components further downstream

negligible. The effective temperature for an amplifier is,

Tamp = (F − 1)T0 (7.77)

where F is a noise figure specification and T0 is a “standard” temperature of 290 K. Putting all of

this together we have

Te f f = Tbright + Telec = [x × 1000 K + (1 − x)293 K] + (F − 1)290 K. (7.78)

Any loss in power, `, from the vapor cell to the detector will further reduce the S/N by
√
`. For
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example with a square law detector

S ∝ Pdet = Pin/`

N ∝
√

Pdet =
√

Pin/`

⇒
S
N
∝

√
Pin

`
(7.79)

Finally, for our current cell, using kT0 ≈ 4 × 10−21 W Hz−1, assuming ` ≈ 10 dB, a noise figure of

F = 2.8 dB= 1.9 (typical for low-noise amplifiers), an input power of 50µW, an excitation efficiency

of 1%, and an absorption fraction of X = 1% · 10−3, we have

S
N

=
10−5

2

√
50µW

2 · 2.9(4 × 10−21 W Hz−1)(3.2 kHz)10
≈ 1.3 (7.80)

7.3.4 EDM sensitivity with present apparatus

The frequency shift due to an EDM in our experiment is given by δ f = 2deWd, with Wd =

6.1 × 10−24 Hz e−1 cm−1 [87]. Therefore the statistical sensitivity of our experiment is

δde =
δ f

2Wd
=

1
2Wd

1
2πτ

(S/N)
√

Nshots
=

8.9 × 10−26 e cm
√

day
(S/N)

, (7.81)

where we have assumed an experimental repetition rate Nshots = 100 Hz and a coherence time

τ = 50µs. Using the current cell with a signal-to-noise of only 1.3 per shot, over 4000 days would

be needed to reach 10−27e cm.

7.3.5 Second generation absorption cell

Next we consider a second generation absorption cell (see Fig. 7.3). This cell will be a 50 cm long

cylinder with gold coated sapphire rods for electrodes. Each end will be sealed with sapphire or YAG

windows. The cell will be heated with coaxial tantalum wires wrapped around the circumference

of the cylinder (which is significantly simpler than the current heating system). A free space

microwave cavity can be placed around the cell. The microwaves are launched and received by

horns with microwave lens for proper focusing. Before the transmitting horn a waveguide magic-

T splits the power. With a variable phase shifter and attenuator (not shown) the power can be
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Figure 7.3: Microwave absorption cell setup. Microwave power is split by a magic tee, sent through
a horn and focused into a microwave cavity surrounding the high temperature absorption cell. A
mirror image lens and horn collect the microwaves and recombine with the split power to cancel
off the DC signal. In the actual experiment variable phase shifters and attenuators will be used to
minimize the DC offset. The absorption signal passes through a low noise amplifier before reaching
a square law detector. Gold coated sapphire rods produce a homogeneous electric field.

recombined after the receiving horn for homodyne detection.

This cell substantially increases the signal-to-noise of the experiment. Increasing the length to

50 cm increases the path length and absorption fraction by a factor of 10.

Modeling of rod electrodes with a cosine voltage distribution show that the electric field ho-

mogeneity can be controlled to 10−3; the level where the linewidth is dominated by Doppler

broadening. This increases the cross section by a factor of 10 but requires 10 times lower power to

prevent saturation for a total increase in signal-to-noise of
√

10.

Modeling of the microwave cavity mode shows that loss in the cavity will be negligible. We also

expect that with proper load matching, loss from the cell to the detector will be negligible.

Use of a cryogenic detector with a noise temperature of ≈ 30 K, such as the Quinstar QCA series,

lowers the electronic noise temperature by 520 K.

Placing a microwave cavity around the absorption cell increases the path length by the finesse,

F , but requires F less power to prevent saturation. The increase in the signal-to-noise is then
√
F .

For a free space cavity with room temperature copper mirrors a quality factor, Q, of 105 is possible
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Figure 7.4: Microwave pump-probe scheme. Compared to the direct absorption measurement, on
left, a pump-probe measurement, on right, could increases the effective absorption cross-section by
a factor of 8. The dipole matrix element for the |J = 1,m = 0〉 → |J = 2,m = 0〉 transition is a factor
of 2
√

2 larger than the EDM transition dipole matrix element.

[124]. The high temperature cell must be sealed so the external cavity will have to pass through

sapphire or YAG windows on either end of the cell. Resistive loss in the windows will be small and

reflections can be mostly eliminated by using a window of (2n+1)λ/4 thickness. To be conservative

we consider Q = 104. The quality factor and finesse for a confocal cavity are related by

F =
cQ
4L f
≈

3 × 1010 cm s−1
× 104

4 × 50 cm × (30 × 109 Hz)
= 50. (7.82)

With this finesse and the improvements mentioned above, the absorption, x, will still be on the

few percent level. Thus we expect the brightness temperature seen by the detection horn to remain

close to room temperature.

Lastly, use of a pump-probe scheme could further increase the absorption cross section. The

dipole matrix element for the |J = 1,m = 0〉 → |J = 2,m = 0〉 transition is a factor of 2
√

2 larger than

the EDM transition dipole matrix element. One could imagine using a strong microwave beam to

pump the molecules to the |J = 2,m = 0〉 state and then probe on the m = 0 transition (see Fig. 7.4).

These improvements, summarized in Table 7.1, give a total increase in the signal-to-noise of

≈ 10000, which gives an EDM sensitivity of 9 × 10−30 e cm
√

day.
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Table 7.1: Signal-to-noise improvements from absorption cell

Improvement Description Gain in S/N

50 cm cell length Increases absorption 10

Rod electrodes with co-
sine voltage distribution

Increased homogeneity which reduces
linewidth, increases cross section, but
requires lower power

√
10

Free space cavity matched
to detector

Lowers loss
√

10

Cryogenic amplifier Lower electronic noise 2

Pump probe Probe on stronger transition increases
cross-section

2
√

2

Microwave cavity Increases effective path length by fi-
nesse, F , but requires reduced power
to avoid saturation

√
50

Improved laser excitation Increases excited state density 2 − 3

Total gain ≈ 10000

7.4 Excited state absorption

To test our understanding of a microwave absorption measurement, we looked with our current

apparatus for an absorption signal in the a state after pulsed laser excitation from the ground state

(see Fig. 7.5 and Fig. 7.6).

Specifically we looked for absorption on the transition |a, J = 1,M = 0〉 ⇒ |a, J = 2,M = 0〉 imme-

diately after a dye laser shot tuned to the R0 transition, |X, J = 0〉 → |a, J = 1〉. There was no applied

electric field and a magnetic field of 100 mG. An Agilent 33250A arbitrary waveform generator

(AWG) was used as the source for our homebuilt 28 GHz frequency setup (see Section 5.9). The

frequency shift key (FSK) modulation feature of the AWG changed the output frequency from on

resonance to 200 kHz off resonance every other laser shot. A Labview program automatically took

the difference of a pair of shots to reduce background transients due to the laser power supply

that showed up on the microwave detection electronics. After the detection horn there were two

microwave amplifiers before an Agilent R422C crystal detector. Fig. 7.7 shows a calibration curve,

V(P), of the detector using a 40 GHz Agilent microwave generator in the Schoelkopf lab. We use a

numerical derivative of this curve, dV
dP , to estimate the response to AC power changes1.

1The frequency response of the detector to power changes was verified to be flat out to several hundred kilohertz using
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Figure 7.5: Microwave absorption proof of principle measurement. After pulsed laser excitation
from the ground state, we looked for transient absorption on the |a, J = 1,m = 0〉 → |a, J = 2,m = 0〉
rotational transition.

Figure 7.6: Microwave absorption setup. Both the pulsed laser excitation and microwave absorption
beams passed through quartz lightpipes into the vapor cell. An air-gap beamsplitting prism allowed
us to send the excitation laser beam in from the side while leaving the microwave beam unaffected.
Microwave horns on both sides of the apparatus served as either the source or receiver of the
absorption beam.
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Figure 7.7: Voltage versus microwave power on the Agilent R422C diode detector. At powers below
≈ −15dBm the output is linear and the diode behaves as a “power law” detector.

Before each series of absorption measurements, the DC power level on the detector was first

recorded. Afterwards the detector signal was fed to a SRS low-noise preamplifier with selectable

bandpass filters and gain, G. The output of the preamp was then digitized with a Labview DAQ

board. An analytical simulation in Mathematica of the RC filters’ responses to an exponential signal

determined the ratio, R, of the observed peak height to the peak height before the filters. Fig. 7.8

shows typical data along with the modeled filter response and the inferred input signal. The peak

microwave absorption fraction is related to the peak signal voltage by

x =
Vpeak

RG
1

dV
dP P

∣∣∣∣∣∣
P=PDC

. (7.83)

Fig. 7.9 shows an example of the absorption lineshape as the microwave frequency was scanned

across the |a, J = 1,m = 0〉 → |a, J = 2,m = 0〉 transition. The line width of 43(2)kHz is consistent

with the expected Doppler width of 43 kHz for the 740 ◦C vapor cell.

a microwave generator.
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Figure 7.8: Time domain microwave absorption signal in the a(1) state. The black line is the average
of 500 laser shots of data for the transition |a, J = 2〉 → |a, J = 1〉 with z-polarized microwaves. The
microwave frequency is shifted on and off resonance every other shot. Pairs of shots are auto-
matically subtracted to eliminate electronic noise. Although this particular example is stimulated
emission, it is exactly analogous to the absorption measurements discussed in the text.
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Figure 7.9: Microwave absorption lineshape in the a(1) state. Each data point is the integrated
absorption from a measurement at a given microwave frequency, such as that shown in Fig. 7.8.
The Gaussian fit gives a FWHM of 43(2)kHz consistent with the expected Doppler width of 43 kHz
for the 740 ◦C vapor cell.
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Figure 7.10: Stark modulation. Modulation of the electric field causes a tensor Stark shift of the
X, J = 1 and J = 2 sublevels (see Section 3.3.1). As the microwave frequency is scanned over the
J = 1→ J = 2 transition it comes on resonance at three frequencies: once at the field-free transition
frequency for all three sublevels (shown on left) and twice at the Stark shifted frequencies of the
m = 0 and |m| = 1 transitions (only the |m| = 1 resonance is shown on the right).

7.5 Ground state absorption

After the proof-of-principle absorption measurement in the excited state we realized that, without

significant modification to the apparatus, we could also look for absorption in the ground state.

Since the absorption cross section is well understood, this measurement enables a fairly direct

determination of the vapor density and hence the vapor pressure of PbO. The low fluorescence

yields we had detected over the years led us to suspect that the PbO vapor pressure may not be as

high as the standard CRC reference[125] suggested. In addition by performing measurements both

before and after the laser excitation pulse we could directly measure the laser excitation efficiency.

7.5.1 Stark modulation

The long measurement times possible in the ground state allowed us to use the lock-in technique

for detection. The lock-in technique roughly consists of modulating a parameter that affects the

output signal and then measuring the amplitude of the output signal at the modulation frequency.

If an experimental background changes slower than the modulation frequency it is suppressed at

the lock-in output.

We initially attempted frequency modulation of the absorption beam but reflections and étalon
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Figure 7.11: Stark modulation signal. The Stark modulation output signal is essentially the differ-
ence between the absorption with or without an applied electric field. An electric field causes a
tensor Stark shift of the X, J = 1 and X, J = 2 sublevels (see Fig. 3.4). As the microwave frequency
is scanned over the J = 1→ J = 2 transition it comes on resonance with all three m sublevels when
the electric field is off, and the Stark shifted levels when the field is on.

effects in the lightpipes and cell windows made this difficult. Stark modulation [69] proved to be

much easier. By modulating the electric field, via the voltage on the cell electrodes, the tensor Stark

shift of the Zeeman sublevels moved the microwave absorption frequency on and off resonance

(see Fig. 7.10). High resolution data on the J = 1 → J = 2 lines in the ν = 0, 1 vibration levels

from the NIST diatomic spectral database[126, 127] were key to initially locating the narrow lines.

We then varied the modulation depth and modulation frequency to confirm that our home-built

precision voltage supply for the electrodes could handle the rapid changes. The absorption signal

changed little with modulation depth and only dropped off above modulation frequencies of 3 kHz,

presumably due to the bandwidth of the high voltage source. The microwave power was also

adjusted to avoid saturation (see Fig. 7.11 for typical data). The peak absorption began to drop at a

microwave power of ≈ −37 dBm (see Fig. 7.12). This agrees fairly well with a rough estimate of −39

dBm for the saturation power based on Eq. (7.73) and Eq. (7.74), with a correction for the collision

induced lifetime of 20µs at a cell temperature of 750 ◦C.
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Figure 7.12: Saturation of the ground state microwave absorption. High microwave power causes
transitions to the upper state which lead to stimulated emission and a reduction of the absorption
signal. The approximate saturation power of -37 dBm agrees well with an estimate of -39 dBm
based on the estimated in-cell microwave power, transition dipole moment, and estimated state
lifetime.

7.5.2 Ground state dipole moment

By determining the position of the Stark-shifted transition frequencies at several electric fields we

could measure the dipole moment of the ground state, µX. From Eq. (3.6) the Stark shift for a given

magnetic sublevel is

∆E(2)
stark =

µ2
XE

2

2Br J(J + 1)
J(J + 1) − 3M2

(2J − 1)(2J + 3)
. (7.84)

Using the literature values of the dipole moment, µX = 4.64(30) D [128], and the rotational constant,

Br = 9.17 GHz[68], gives differential Stark shifts of

∆Est,m=0 = −
8

105
µ2

XE
2

B
= −45Hz

(
E

V cm−1

)2

, (7.85)

and

∆Est,|m|=1 =
13
210

µ2
XE

2

B
= 37Hz

(
E

V cm−1

)2

. (7.86)

Fig. 7.13 shows the absorption at several different modulation depths. The measured line positions

suggest a dipole moment of µX = 4.35 D, consistent with the published value.
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Figure 7.13: Stark modulation at several field strengths. The markers depict the expected Stark-
shifted transition frequencies for a dipole moment of µX = 4.35 D, consistent with the literature
value of 4.64(30) D. Offsets are inserted for each field for clarity.

7.5.3 Vapor pressure

The pressure in our vapor cell is related to the number density via the ideal gas law,2

PV = NkT =⇒ P = nkT, (7.87)

where n is the number density of the gas. We have already seen in Eq. (7.70) that the absorption

fraction, x, is also related to the number density via x = nxσL, where σ is the absorption cross section

and L is the path length. However, here nx refers to the difference in population between the upper

and lower states of the absorption transition. To relate nx to n we need to calculate two factors:

the fraction of molecules in a given rovibrational level and the fractional difference in population

between the upper and lower states.

At thermal equilibrium the fraction of molecules in a given vibrational state is the normalized

2The high temperature and relatively low pressure of the vapor cell make this a good approximation.
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Boltzmann factor of the vibrational energy,

fν =
e
−weν

kT∑
n=0,···

e
−wen

kT

≈
e
−weν

kT

1 − e
−we
kT
. (7.88)

Similarly, the fraction of molecules in a given rotational state is

fJ =
(2J + 1)e

−BJ(J+1)
kT∑

n=0,···

(2n + 1)e
−Bn(n+1)

kT

≈
B
kT

(2J + 1)e
−BJ(J+1)

kT . (7.89)

The density of the upper state of the absorption transition is simply the density of the lower state

multiplied by the Boltzmann factor of the transition energy. Therefore the fractional difference is

ful = 1 − e−
~ωabs

kT . (7.90)

To determine the cross section we use the dipole matrix elements calculated in Section 3.3.1

for the ground state Stark shift. With no electric or magnetic fields the magnetic sublevels are all

degenerate. Averaging over the sublevels, the square of the transition matrix element is then

|〈dX〉|
2 =

1
2J + 1

J∑
m=−J

µ2
X

(J + 1)2
−m2

(2J + 1)(2J + 3)
= µ2

X
J + 1

3(2J + 1)
. (7.91)

Using the literature value of µX = 4.64 D and Eq. (B.1), the cross section is then σX = 4.4 × 10−11 cm2.

The Doppler-broadened cross section , using Eq. (7.67), is σD = 3.7 × 10−12 cm2.

Finally, combining all of these factors we find

P =
xkT

fJ fν fulσDL
. (7.92)

Fig. 7.14 shows the measured values along with several vapor pressure curves from the literature.

Our older papers based sensitivity estimates on the CRC curve [125] which is a factor of 10-50

higher than the measured values. More recent data from Popovič et al. [129] and Lopatin et al. [130]

are based on mass spectrometry measurements that can separately identify not only PbO, but also

its dimers and tetramers in the vapor (see Fig. 7.15). The CRC curve is based on much older data

which assumed the total vapor pressure over solid PbO was due solely to gaseous PbO.
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Figure 7.14: PbO partial vapor pressure. The measured data points are inferred from microwave
absorption. The standard CRC reference suggested a vapor pressure 10-50 times higher than the
measured values. More recent measurements (Popovič et al. [129] and Lopatin et al. [130]) that
single out the partial pressure of PbO monomers show better agreement with the data.
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Figure 7.15: Partial and total vapor pressure for PbO polymers above solid PbO. Vapor pressure
curves from Popovič et al. [129] and Lopatin et al. [130] for monomer, dimer, and tetramer PbO
over solid PbO. Note the substantial difference between the black lines, which are the total vapor
pressures, and the red lines, which are the monomer PbO vapor pressures.
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Figure 7.16: Vapor pressure versus cell body and stem temperatures. The PbO vapor cell has a small
stem tube which was designed as a reservoir for the PbO vapor. In theory the stem temperature,
when lower than the cell body temperature, should determine the PbO vapor pressure. In practice
it appears only the cell body temperature matters.

Finally we note that the vapor pressure measurements also enabled a better understanding of

our control over the cell temperature. The vapor cell was designed with a small stem that was

supposed to act as a reservoir of the PbO, by keeping its temperature lower than the rest of the

cell. As shown in Fig. 7.16, the temperature measured with thermocouples near the stem had little

correlation with the vapor pressure. Instead the cell body temperature seems to determine the vapor

pressure. This is probably due to significant absorption of PbO into the vapor cell body. We had

seen previous indications of this when we switched from naturally abundant PbO to isotopically

enriched PbO. Even after cleaning the cell body with solvents, the isotope composition of the PbO

vapor upon heating remained the same.

7.6 Pulsed dye laser excitation efficiency

Microwave absorption measurements also proved useful for determining the excitation efficiency

of our pulsed dye laser from the ground state, X, to the excited a(1) state. For this measurement we

tuned the dye laser to the R1 transition, i.e. |X, ν = 1, J = 1〉 → |a, ν = 5, J = 2〉. No electric or magnetic
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field was applied, leaving the magnetic sublevels degenerate. An initial microwave absorption

measurement on the transition |X, ν = 1, J = 1〉 → |X, ν = 1, J = 2〉 determined the number density

in the |X, ν = 1, J = 1〉 state. After the dye laser excitation pulse, measurement of the microwave

stimulated emission on the |a, ν = 5, J = 2〉 → |a, ν = 5, J = 1〉 transition determined the number

density of molecules transferred to the excited state (see Fig. 7.17). Note, a stimulated emission

measurement is exactly analogous to an absorption measurement.3

To relate the fractional absorption to the number density, cross sections were needed for

both states. The ground state absorption cross section, calculated in Section 7.5.3, was σX =

3.7 × 10−12 cm2. A similar calculation for the |a, J = 2〉 → |a, J = 1〉 cross section, averaged over the

magnetic sublevels and corrected for Doppler broadening, gives σa = 1.3 × 10−12 cm2. The observed

absorption signals imply an excitation efficiency of ≈ 10%. If the dye laser saturated the X → a

transition we would expect an excitation efficiency of 50%. In practice, the longitudinal modes of

the dye laser reduce the efficiency. A rough estimate suggests suggests the actual efficiency should

be in the 10 − 20% range (see Section 5.10.2 for further discussion).

In addition, we also measured the microwave absorption in the ground state after the dye

laser pulse to verify that all of the molecules leaving the |X, J = 1〉 state ended up in |a, J = 2〉. The

inferred number density change in the ground state was actually a factor of two smaller than what

appeared in the excited state. This is most likely due to a slight frequency dependent response of

the microwave detector, which could change the conversion factors for determining the absorption

fraction (see Eq. (7.83)). The frequency of the microwave beam in the ground and excited states was

28.2 GHz and 36.5 GHz, respectively.

3The number density inferred from the original absorption measurement on the |a, J = 1,m = 0〉 → |a, J = 2,m = 0〉 tran-
sition did agree with the stimulated emission measurement.
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Figure 7.17: Excitation efficiency measurement. 1. Microwave absorption in the ground state
determines the number density of the |X, J = 1〉 state. 2. A pulsed dye laser excites the molecules
from |X, J = 1〉 to |a, J = 2〉. 3. Microwave absorption in the excited state determines the number
density in the |a, J = 2〉 state. The ratio of the number densities gives the excitation efficiency. In
addition, an absorption measurement in the ground state confirms the number density of molecules
that left the |X, J = 1〉 state.



Chapter 8

Conclusions and Future Directions

The current sensitivity of the PbO experiment is not high enough to place a new limit on the

electron EDM. Without EDM state preparation we have achieved beat frequency sensitivities of

≈ 105 Hz/
√

Nsh, where Nsh is the number of laser shots. With an EDM state preparation efficiency

of 100%, this corresponds to a sensitivity of δde = 3 × 10−27e·cm/
√

T, where T is the integration time

in days. To reach the current experimental limit would require over 16 full days of integration.

At this point the highest state preparation efficiency achieved was 50%, with the microwave

erasure method. A recent analysis has shown that this method may not be reliable. Computer

modeling of a new method based on fitting two beat frequencies predicts it will give an effective

efficiency a factor of 2
√

2 higher than the microwave erasure method. However, this method has

not been tested with actual experimental data. In addition, since it only works at high electric and

magnetic fields, we may not have much flexibility for testing systematic effects.

The new laser system should improve the excitation efficiency and reduce the background fluo-

rescence. The excitation efficiency is currently estimated to be 10% and the background fluorescence

is likely 3-4 times the fluorescence from the J=1 state. If we conservatively assume the excitation

efficiency is increased by a factor of 2 and the background fluorescence is reduced by a factor of 2

this should give an increase to the EDM sensitivity of 2.

With both the two beat frequency fitting and new laser system improvements we project a

sensitivity of δde = 1 × 10−27e·cm/
√

T, where T is the integration time in days. Integrating for

2 days would match the current experimental limit. The apparatus has been successfully run

continuously for 48 hours. In addition, it has been run several hours a day for months without
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technical problems. Integrating continuously for a few weeks should pose no problems.

The seeded laser system has been used to take fluorescence data with the old YAG laser. The

new YAG still needs to be integrated into the system but this should be straightforward. The seed

laser should be broadened to match the Doppler width of 800 MHz for optimal excitation. Using the

flat-flat Fabry Perot we have successfully observed ≈ 300 MHz sidebands on the output pulses of

the seeded dye laser system by modulating the bias-T current input of the IR seed laser. However,

these observations were averaged over several pulses. In addition, we would ideally like to use

noise modulation to make a smoother lineshape.

There are not too many things left on the rest of the apparatus that could be further optimized.

The analysis in Section 5.7 suggests the optical filters are now near optimal. Alternative detectors

and detection schemes were extensively explored in previous theses[52, 81]. The second generation

microwave absorption cell discussed in Chapter 7 would offer much higher sensitivity than the

current apparatus. However, the ThO beam experiment, which is being pursued instead, uses

standard AMO techniques and is projected to offer even higher sensitivity along with the promise

of a less delicate experimental apparatus.

For the most part, the main thing left to do is to take EDM data!1

1..and, being a precision experiment, investigate systematic effects more extensively.



Appendix A

Mixing in a two level system

Consider a two-level Hamiltonian of the form

H =

x y

y −x

 . (A.1)

Defining r ≡
√

x2 + y2, θ ≡ arctan(y/x) we can rewrite this as

H =

r cosθ r sinθ

r sinθ −r cosθ

 . (A.2)

One can quickly check that the unnormalized eigenvectors of H are
(

sinθ
±1−cosθ

)
with eigenvalues ±r.

After some algebra one finds the normalized eigenvectors are

1
√

2

±
√

1 ± cosθ
√

1 ∓ cosθ

 or

cosθ/2

sinθ/2

 ,
− sinθ/2

cosθ/2

 . (A.3)

In the limit of small mixing, y/x→ 0, we haveθ→ 0, eigenvalues of x,−x, and eigenvectors
(

1
0

)
,
(

0
1

)
.

In the limit of strong mixing, y/x → ±∞, we have θ → ±π2 , eigenvalues of y,−y, and eigenvectors

1
√

2

(
1
±1

)
,
(
∓1
1

)
.
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Appendix B

Comparison of cross section

calculations

At first glance, different textbooks seem to give different formulas for the absorption cross section.

We will show below these differences are only in notation or assumptions. All are equivalent to the

formula

σ =
8π
~c
ω
γ
|〈d〉|2 , (B.1)

where ω is the angular frequency of the transition, γ is the natural linewidth in angular frequency

equal to 1/τ, and |〈d〉|2 is the transition dipole matrix element squared. Hopefully this will prevent

future students from struggling through factors of 2 and π.

B.1 Budker, Kimball, and Demille [86]

The final cross-section formulas in this book (hereafter BKD) tend to be stated in terms of reduced

matrix elements or partial widths and include averages over polarizations. This is often appropriate

for optical transitions where transition matrix elements can be difficult to calculate but makes it

difficult to compare to more tractable cases such as rf transitions.

The derivation starts with the statement of Fermi’s golden rule (3.73)

dW f i =
2π
~

∣∣∣〈 f
∣∣∣ H′ ∣∣∣ i〉∣∣∣2 ρ f (E)P(E) dE, (B.2)
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where ρ f (E) is the density of states. For a Lorentzian lineshape the energy distribution, P(E) is given

by

P(ω) =
γ/2π

(ω − ω0)2 + (γ/2)2 (B.3)

where γ = 1/τ is the FWHM of the angular frequency spread. Assuming monochromatic light we

can substitute the resonant value of P(ω0) = 2
πγ for the integration over energy into Eq. (B.2) which

gives

Weg =
4
γ~2

∣∣∣〈 f
∣∣∣ H′ ∣∣∣ i〉∣∣∣2 (B.4)

From 3.123, ∣∣∣〈 f
∣∣∣ H′ ∣∣∣ i〉∣∣∣2 =

2π~ω0n
V

|〈d〉|2 , (B.5)

where |〈d〉|2 = |〈d · ε̂〉|2, with ε̂ the light polarization, n is number of photons in the electromagnetic

mode, and V is the volume. Since the photon flux is

Φ =
nc
V

(B.6)

we have ∣∣∣〈 f
∣∣∣ H′ ∣∣∣ i〉∣∣∣ =

2π~ω0Φ

c
|〈d〉|2 . (B.7)

This gives a cross section of

σBKD =
Weg

Φ
=

8π
~c
ω0

γ
|〈d〉|2 (B.8)

B.2 Sakurai [131]

With an assumption of monochromatic excitation we start with (S 5.7.22)

σabs = 4π2αωni |〈n | x | i〉|2 δ(ω − ωni) (B.9)

Similar to BKD we substitute the resonant value of a Lorentzian lineshape Eq. (B.3) for the δ-function

(the limit γ → 0 of a Lorentzian is one analytical expression for a δ-function). Note that γ is also
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defined as 1/τ and is again equal to FWHM of the angular frequency. This gives

σSak = 4π2 e2

~c
ωni |〈n | x | i〉|2

2
γπ

=
8π
~c
ωni

γ
|〈d〉|2 (B.10)

B.3 Townes and Schawlow [69]

Townes and Schawlow (TS) state their final result for RF frequencies as an absorption per unit

length (TS 13-22)

γ =
8π2N f
3ckT

∣∣∣µi j

∣∣∣2 ν2 ∆ν

(ν − ν0)2 + (∆ν)2 , (B.11)

where N is the total number density of molecules, f is the fraction of molecules in the bottom

state, ∆ν is the HWHM, and |
µi j|

2

3 is the average of the sum of the squares of the transition matrix

elements (TS 1-76)

∣∣∣µi j

∣∣∣2 =
∑
M′

∣∣∣µx(J M J′M′)
∣∣∣2 +

∣∣∣µy(J M J′M′)
∣∣∣2 +

∣∣∣µz(J M J′M′)
∣∣∣2. (B.12)

To compare to the other cross-sections we need to evaluate Eq. (B.11) on resonance, divide by the

difference in population density of the two levels, substitute |〈d〉|2 for |
µi j|

2

3 , and multiply by two to

account for the HWHM versus FWHM. The population difference is given by a Boltzmann factor

times the population which for the radio frequencies discussed in this book (where hv� kT) is

∆n =
hν0

kT
N f . (B.13)

Doing all of this gives

σT&S =
8π2

3hc

∣∣∣µi j

∣∣∣2 ν
∆ν

=
8π
~c
ω
γ
|〈d〉|2 . (B.14)



Appendix C

Optical alignment hints

This appendix gives a few hints for alignment of the more difficult optical elements. Refer to

Fig. 5.39 for a diagram of the optical setup.

C.1 Tapered amplifier

Coupling the beam into the tapered amplifier is similar to coupling into a single mode fiber (SM).

Turn on the tapered amplifier and adjust the current to the point where beams on the input and

output sides can be seen on an IR card. The incoming beam profile from the DL PRO, which has

been shaped by an anamorphic prism pair, should roughly match the shape of the beam coming

from the input side of the tapered amp. Make sure the beam coming from the input side of the

tapered amplifier is roughly collimated by the input side aspheric lens. Overlap the beams at two

points using the two mirrors on the input side. Walk the beam until an amplified beam is seen on

the output side. Slowly turn up the power and maximize the output. Adjust the λ/2 waveplate to

rotate the polarization for optimal amplification (the polarization should be roughly vertical). On

the output side one axis is collimated by the aspheric lens. The second axis is collimated by the

cylindrical lens outside the tapered amp box. The focal length should be such that the collimated

beam is circular. Positioning the beam in the center of both lenses is crucial to obtaining a decent

output beam shape. A teardrop shape or a series of bands in the laser profile usually indicates the

aspheric lens is not centered.
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C.2 Polarization maintaining single mode fiber

To achieve maximum coupling it is extremely important to properly shape and collimate the tapered

amplifier output beam. Next, connect a single mode (SM) fiber to the fiber collimator with the fiber

tester on the other end. Roughly adjust the z-axis of the collimating lens until the output test beam

is collimated. Overlap the output beam from the tapered amplifier with the test beam at a point

as far as possible from the fiber by adjusting the dielectric mirror mount and collimator mount.

Replace the SM fiber with the PM fiber and maximize the coupling by walking the beam with the

mirror and collimator mounts. It is often helpful to first loosely attach the fiber to the collimator and

then iteratively maximize the coupling and tighten the fiber. Last, iteratively adjust the z-axis of the

collimating lens and re-maximize the coupling. The z-axis adjustment screw has some hysteresis

so adjustments should be made in a single direction. With some care, over 60% coupling can be

achieved.

There are several methods for aligning the input beam polarization to an axis of the PM fiber. We

have found the quickest and easiest method is to mount the output end of the PM fiber on a rotation

stage and monitor the power after a polarizing beam splitting cube. Iteratively adjust the output

rotation stage and the λ/2 plate before the input end of the fiber until the power is minimized.

Next, for a more precise adjustment, rotate the output stage 45 degrees and monitor the power after

the PBS while changing the temperature of the fiber (holding it your hand, using a heat gun, or

using a dust spray can will all work). Slightly adjust the input λ/2 plate until the change in power

with temperature is minimized. In practice, the second adjustment is usually not needed. Before

removing the PBS adjust the output polarization of the PM fiber to vertical if coupling to the PPLN

waveguide.

C.3 PPLN

A clean cleave on the bare fiber can be obtained by first stripping the clear cladding off the fiber

with a razor blade and then nicking the end with a diamond tip. After gently breaking the fiber

at the nick attach the fiber tester to the connectorized end of the fiber. The output beam from the

cleaved end should look perfectly circular. The fiber can be multimode at the wavelength of the

fiber tester so if two symmetric lobes are seen, adjust the position of the fiber tester. A bad cleave
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looks clearly asymmetrical and distorted. Gently using optical fiber polishing paper on the end

sometimes helps to remove debris.

Coupling to the PPLN channels can be tricky, particularly with low input powers. A crude

microscope made from a short focal length aspheric, a lens tube with an aperture, and a longer

focal length lens can help to position the fiber close to the waveguide and align it to one of the

channels. With a CCTV camera attached to the microscope, we have found that the channels are

visible in higher contrast when the chip is illuminated with an incandescent bulb flashlight, rather

than an LED flashlight. Adjusting the aperture on the microscope also helps with contrast. To align

the vertical direction monitor the beam on the output side of the chip. As the height of the beam

reaches the top edge of the chip a sudden change to a diffraction pattern occurs. The farther the

beam height is above the chip the closer the diffraction lines become.

At this point, with high input powers (> 100 mW) the alignment is fairly easy. The temperature

of the PPLN chip should be adjusted to≈ 62 ◦C. Confirm that the diode laser is running single mode

and at the proper frequency (9120.17 cm−1 for the R0 line). Starting with a distance of about one

fiber width between the fiber and chip, scan the fiber across the width of the chip until green light

is seen on the output. Maximize the green light by adjusting the horizontal and vertical position

of the fiber, move the fiber slightly closer to the chip, and repeat. At low powers the fiber must

be positioned as closely as possible to the chip and aligned precisely with the microscope. Once

decent coupling is achieved note the positions of the micrometer knobs on the positioning stage.

Back the fiber away from the waveguide and gently screw on the top of the oven (which helps with

temperature stability). When adjusting the positioning stage in the future be especially careful not

to move the axis that controls the spacing between the fiber and chip past the noted point, as contact

may scratch the coating on the chip.

C.4 Four pass seeded dye amplifier

To align the four passes first make sure that the seed beam goes through the center of the Faraday

rotator and passes through the dye cell between the inner surface of the quartz and the plastic

separator in the middle of the dye cell. With a few milliwatts of green power it is easy to see the

beam path in the dye cell from above and to the side. Next use the M1 and M2 mirrors to align the

first and second passes below PBS2. A small amount of the first pass is deflected by PBS2. Chop
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the beam with a piece of paper between M1 and M2 and use M1 to overlap the spots immediately

below PBS2. Next overlap the spots near the grating (or remove the grating and look farther away)

with M2. Roughly align the grating so that the first order reflects straight back. Look for the spot

from the third pass between M1 and M2 while chopping in front of the grating. The fourth pass

is automatically aligned at this point although it may not be visible at the output. With the pump

laser on there should be a bright spot in the output that disappears when the seed laser is blocked.

Direct the output to the monitor étalon. When seeded there will be a clear ring pattern. Adjust M1,

M2, and the grating to maximize the contrast of the rings.



Appendix D

Data fitting

D.1 Uncertainty in the beat frequency fit

In this section we will derive the theoretical uncertainty of the quantum beat frequency in a least-

squares fit taking into account decohering effects and background signals. For later comparison,

we first recall that a naive estimate based on the uncertainty principle and counting statistics gives

δω =
1

cT
√

N
. (D.1)

We perform a least-squares fit of the fluorescence signal to the functional form,

S(t) = αI(t)
[
1 + ce−T/Tb cos(ωbT + φ)

]
+ d. (D.2)

I(T) is the “scrambled data” in the absence of quantum beats, normalized such that I(0) = 1. We

will discuss how I(T) is determined in the next section. For now we use the fact that I(T) is roughly

exponential, I(T) ≈ e−T/T1 , where T1 is the lifetime of the a(1) state in the vapor cell. The free

parameters in the fit are the signal size α, the quantum beat contrast c, the quantum beat frequency

ωb, the quantum beat phase φ, the DC background d, and the excess quantum beat decoherence

time Tb. The factor Tb accounts for collisions which destroy the coherence of the quantum beats but

leave the molecules in the a(1) state which causes the contrast to decrease more quickly than the

state lifetime.
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To estimate the uncertainty of our fit we follow the analysis outlined in [95], but also consider the

case where the background term, d, comparable to the signal size, α. We assume that I(T) = e−T/T1 .

Analytic and empirical analysis has shown that only the quantum beat phase shows significant

correlation with the quantum beat frequency. Thus to determine the uncertainty, δω, in the beat

frequency we start with the error matrix,

E−1 =

(δω)2 δωδφ

δωδφ (δφ)2.

 (D.3)

The error matrix is related to the χ2 of the fit (see e.g. [132]) by

E =
1
2


∂2χ2

∂ω2
∂2χ2

∂ω∂φ

∂2χ2

∂ω∂φ
∂2χ2

∂φ2 .

 (D.4)

Combining these expressions we find

(δω)2 δωδφ

δωδφ (δφ)2

 =
2

∂2χ2

∂ω2
∂2χ2

∂ω2 −

(
∂2χ2ωφ

∂∂2

)


∂2χ2

∂φ2 −
∂2χ2

∂ω∂φ

−
∂2χ2

∂ω∂φ
∂2χ2

∂ω2 .

 . (D.5)

The χ2 value for a given data set {Di = D(Ti)}, with noise {δSi = δS(Ti)}, and fit model values

{Si = S(Ti)} is

χ2 =

n∑
i=1

(Di − Si

δSi

)2

. (D.6)

Now consider the second derivate of χ2 with respect to two of the fit parameters, X and Y,

∂2χ2

∂X∂Y
=

∂
∂X

2(Di − Si)
δS2

i

∂Si

∂Y


= −2

1
δS2

i

∂Si

∂X
∂Si

∂Y
+ 2

(Di − Si)
δS2

i

∂2Si

∂X∂Y

≈ −2
1
δS2

i

∂Si

∂X
∂Si

∂Y
. (D.7)

Here we used the fact that Di and Si are independent of the fit parameters, and that the residuals,
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Di − Si, average to zero for a good fit. Defining the beat coherence time, T−1
2 = T−1

b + T−1
1 , we find

∂2χ2

∂φ2 = 2
∑

i

α2c2e−2Ti/T2 sin2(ωbTi + φ)

δS2
i

(D.8)

∂2χ2

∂φ∂ω
= 2

∑
i

Ti
α2c2e−2Ti/T2 sin2(ωbTi + φ)

δS2
i

(D.9)

∂2χ2

∂ω2 = 2
∑

i

T2
i
α2c2e−2Ti/T2 sin2(ωbTi + φ)

δS2
i

(D.10)

If our signal is expressed as a counting rate, i.e. in units of photoelectrons per second, the number

of photoelectrons detected in each interval is Ni = Si∆T. If our detection is shot noise limited then

(δSi∆T)2 = Ni which implies (δSi)2 = Si/∆T. In these units N =
∫

S(T) dT ≈ α
∫

e−T/T1 dT = α/T1,

where N is the total number of photoelectrons detected. Inserting the above expression for (δSi)2

gives

∂2χ2

∂φ2 = 2
∑

i

∆Tα2c2e−2Ti/T2 sin2(ωbTi + φ)

αe−T/T1

[
1 + ce−Ti/Tb cos(ωbTi + φ)

]
+ d

≈ αc2
∫
∞

0

e−2T/T2

e−T/T1 + d/α
dT (D.11)

∂2χ2

∂φ∂ω
≈ αc2

∫
∞

0

Te−2T/T2

e−T/T1 + d/α
dT (D.12)

∂2χ2

∂ω2 ≈ αc2
∫
∞

0

T2e−2T/T2

e−T/T1 + d/α
dT (D.13)

In the approximation we have assumed small contrast to eliminate the cosine term in the denomina-

tor, replaced the quickly oscillating sin2 term in the numerator by its average value of 1/2 (assuming

that ωb � 1/T2), and replaced the sum by an integral. The integral can be expressed in terms of the

Lerch transcendental function, but for our purposes we would prefer a simpler approximation. In

the limits of either no background or large background these integrals have the common form,

∫
∞

0
Tne−T/τ dT = n!τn+1. (D.14)

The time constant, τ, in the limit d/α� 1 is τ ≈ T1T2
2T1−T2

≡ τα and for d/α� 1 it is τ ≈ T2/2 ≡ τD. The
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exact integrals are well approximated by an interpolation between these values of the form

∫
∞

0

Tne−2T/T2

e−T/T1 + d/α
dT ≈ n!τn+1

(n+1)

1
τn+1

(n+1)

=
1
τn+1
α

+
d
α

1
τn+1

d

. (D.15)

Plugging these values back into Eq. (D.5) we arrive at the result,

(δω)2 δωδφ

δωδφ (δφ)2

 =
2
αc2

1
2τ3

(3)τ(1) − τ
4
(2)

 τ(1) −τ2
(2)

−τ2
(2) 2τ3

(3)

 . (D.16)

For the frequency uncertainty there is little change in accuracy with the further approximation

τ(n) = τ(3). This gives

δω =

√
2

c
√
ατ3

(3)

. (D.17)

With a little algebra one show this is equivalent to

δω =

√
2

c
√
αT3

1

ξ
(

T1
Tb
, d
α

)
=

√
2

cT1
√

N
ξ
(

T1
Tb
, d
α

)
, (D.18)

where ξ
(

T1
Tb
, D
α

)
=

√(
1 + 2 T1

Tb

)3
+ 8

(
1 + T1

Tb

)3 d
α is a correction factor for our earlier estimate Eq. (D.1).

The first term in the square root comes from the correction for Tb, while the second is a factor which

takes into account the different contributions to the shot noise from the signal and the constant

background.1 We typically operate in the regime where T1 = Tb, which gives ξ =
√

27 + 64 d
α . Thus

for a fixed signal size, α, the uncertainty slowly degrades for a background d > 1
3α.

Using a 100 nm bandpass interference filter and KG4 IR blocking glass, the current value of

d/α ≈ 0.5 gives ξ ≈ 8. Under this configuration α = 3.5 × 1011photoelectrons/s, c = 0.08, and

T1 ≈ T2 ≈ 40 × 10−6 µs which gives a single shot uncertainty estimate of δω = 2π × 144 Hz. The

actual uncertainty, determined by the width of a Gaussian fit to a histogram of the fitted frequencies,

is 148 Hz, showing that our detection is shot-noise limited. Note these values are at zero electric

field without EDM state preparation.

One can show that the
√

2 in the numerator is eliminated if the beat phase, φ, is fixed. For a

1ξ is similar to F in [29], but defined so that the connection between the frequency uncertainty and T1 is clear, rather than
T2.
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given experimental configuration φ should be a constant dependent on the beginning time of the

data relative to the laser shot, the position of the PMT detector, and electronic delays in the data

acquisition system. In theory we could use a large dataset to determine φ, and then fix its value

and refit the data. Because the phase is correlated with the beat frequency, we have been hesitant

to do so. This caution may have been warranted as the current single shot frequency uncertainty

of 150 Hz corresponds to a phase uncertainty of 40 milliradians. For a beat frequency of 300 kHz

this corresponds to an uncertainty of 20 ns in the start time of the fit relative to the laser shot. Both

the BNC pulse generator used to trigger data acquisition, and the data acquisition board used in

the past had 20 MHz internal clocks or 50 ns resolution. The new high speed NI-SCOPE data

acquisition board now being used has a time-to-digital converter which records the time between

the trigger and first data point conversion to sub-nanosecond accuracy. In future measurements

this board will be triggered by a photodiode monitoring the laser system.

D.2 Extracting “scrambled” data

As discussed above, our data fitting model assumes we can fit the quantum beat data to a fluo-

rescence signal with the same time dependence but no quantum beats. Over the years we have

developed several methods to acquire this background data.

The first method, before we used magnetic shields, was to simply apply a magnetic field

gradient across the cell which caused the quantum beats to quickly decohere or “scramble”. This

method worked quite well but was inefficient with magnetic shields since it requires degaussing

the magnetic shields each time we use it.

When microwaves were introduced to our system we discovered a second method to introduce

decoherence. Applying long powerful resonant microwave pulses introduced enough inhomo-

geneity to wash out the quantum beats. Since the J=2 g-factor is only one-third of the J=1 g-factor,

the molecules pick up different phases as they Rabi flop between the two states. Combined with

inhomogeneous microwave power in the cell this washes out the J=1 quantum beats. This method

has two advantages. First, it only affects the molecules in the quantum state of interest. We have

seen some evidence that the slow quantum beats of background molecules in higher J states con-

tribute to the shape of the fluorescence envelope when we use an excitation scheme with the dye

laser horizontally polarized. These molecules, and therefore the background, are unaffected by the
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microwaves. Second, this method is easy to implement in software. Its only drawback is the time

that it takes from EDM data collection.

Before the microwave method was developed we explored the possibility of extracting the

scrambled data from the normal quantum beat data. Jiang [52] discusses two methods based on

techniques used in the muon g-2 experiment. Here I will discuss in more detail the method of using

linear combinations of time-shifted data to cancel the quantum beats.

The basic idea behind this method is to add our quantum beat data to a copy of itself shifted

by half a quantum beat cycle. If the envelope has changed little over the half cycle the quantum

beats our canceled. To be more concrete we consider a sinusoidal signal on top of some arbitrary

background signal A(t),

S(t) = A(t)(1 + cosωt). (D.19)

Using a Taylor expansion with ∆t = π
ω we find

S(t ± ∆t) = A(t ± ∆t)[1 + cos (ωt ± π)]

=

[
A(t) ± A′(t)∆t + A′′(t)

∆t2

2
± A′′′(t)

∆t3

6
+ A(4)(t)

∆t4

24

]
[1 − cosωt]. (D.20)

Now if we take the linear combination

Ã1(t) =
1
4

[S(t − ∆t) + 2S(t) + S(t + ∆t)]

=
1
2

A(t)(1 + cosωt) +
1
2

[
A(t) + A′′(t)

∆t2

2
+ A(4)(t)

∆t4

24

]
(1 − cosωt)

= A(t) +

[
A′′(t)

∆t2

4
+ A(4)(t)

∆t4

48

]
(D.21)

We have now recovered the “scrambled” data, A(t), up to some terms involving second or higher

order derivatives of A(t). In the actual experiment we have A(t) ≈ e−t/τ, with τ ≈ 50µs and

∆t = 1
2 fbeats

≈ 2µs. This gives

A′′(t)
∆t2

4
≈ 4 × 10−4

× A(t). (D.22)
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D.2.1 Equivalence to g-2 ratio method

In the g-2 muon experiment the data is not fit to a model function. Instead they first calculate the

“ratio” function

r(t) =
V(t) −U(t)
V(t) + U(t)

, (D.23)

where V(t) = 2S(t) and U(t) = S(t − T/2) + S(t + T/2). To first order this function is fit to a sinusoid,

r(t) 7→ C cosωt, (D.24)

where 7→ means “is fit to”. While not immediately obvious, this ratio method is equivalent to the

fitting method described above. Our method can be described by

S(t) 7→ Ã(t)(1 + C cosωt), (D.25)

where Ã(t) is the estimate of the background function. Our first order estimate is related to U(t) and

V(t) by

Ã(1)(t) =
1
4

[S(t − T/2) + 2S(t) + S(t + T/2)] =
1
4

(V(t) + U(t)]. (D.26)

Manipulating Eq. (D.25) our fitting method is equivalent to

S(t)
Ã(t)

− 1 7→ C cosωt (D.27)

Using S(t) = 1
2 V(t) we can then show the equivalence between the two methods

S(t)
Ã(t)

− 1 =
1
2 V(t)

1
4 (V(t) + U(t))

− 1 =
V(t) −U(t)
V(t) + U(t)

= r(t). (D.28)

This equivalence was only recently realized. The g-2 ratio method has the advantage that the fit

model is an analytic function which simplifies programming.
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